- High Power Laser Science and Engineering
- Vol. 12, Issue 6, 06000e69 (2024)
Abstract
1. Introduction
The rapid development of laser technologies promises substantial growth of peak laser intensities and thus has pushed laser–plasma interaction to the relativistic regime over the past several decades[1]. This has provided opportunities for building tabletop particle accelerators and compact X/
In order to obtain brilliant ultrashort X/
Recently, the vortex laser has been extensively investigated, which opens a new degree of freedom for laser–plasma interaction. A Laguerre–Gaussian laser pulse at relativistic intensities possesses high OAM density and hollow laser fields[32–36], making it interesting for many potential applications, such as charged particle acceleration[37–44], extreme magnetic field generation[45,46] and X/
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
To the best of our knowledge, high-quality isolated attosecond electron bunches are crucial for the production of ultra-brilliant isolated attosecond
2. Simulation setup and results
Here we schematically show the isolated attosecond
Figure 1.(a) Schematic diagram of an intense Laguerre–Gaussian laser pulse interaction with a micro-droplet target. Here, the map in the plane presents the projection of electron density and the red curve in the plane shows the photon density distribution along the laser axis. The U-shaped red arrow shows the scattering process of a counterstreaming linearly polarized Gaussian laser pulse off a rotating relativistic electron sheet. (b) Transverse electron density distribution at , 20 and 30, respectively. (c), (d) Electron divergence angle at and evolution of the electron energy spectrum. (e), (f) Electron distribution in the phase space and at . Here, the magenta arrows in (b) denote the average transverse momentum of electrons at each cell. The red curves in (e) and (f) represent electron numbers with respect to the longitudinal velocity and dephasing rate , respectively.
2.1. The generation of rotating attosecond electron sheets
When an intense circularly polarized Laguerre–Gaussian laser pulse illuminates the droplet, abundant electrons are dragged out of the droplet, forming an isolated dense electron layer, as shown in Figure 1(b). The electron layer has a maximal density of
It is interesting to see that this isolated electron bunch shows an initial quasi-monoenergetic distribution, as shown in Figure 1(d), whose cut-off energy is up to 340 MeV at
Figure 2.(a) Normalized longitudinal electric field and (b)
Since only electrons phase-locked simultaneously in the transverse and longitudinal directions are able to be accelerated continuously in the laser field, we may achieve an isolated short electron bunch by manipulating electron phase-locking. Since the laser magnetic force counteracts the laser radial electric force in the transverse direction, electrons can be tightly confined around the laser axis. The transverse velocity of electrons is much less than the longitudinal velocity, as shown in Figure 1(e). Therefore, we ignore the transverse electron motion in the following analysis, which agrees with our particle-in-cell (PIC) simulation results. The electrons’ motion in one-dimensional approximation can be described by
Figure 2(c)–2(f) present the evolution of the longitudinal electron velocity
To verify the one-dimensionless model, we carry out a series of 3D-PIC simulations by changing the laser CEP
Figure 3.(a)–(d) Electron density distribution at and (e)–(h) corresponding electron energy distribution at in the plane when , , and , respectively.
2.2. The production of isolated attosecond
In our configuration, such an isolated energetic electron bunch collides head-on with a scattering laser pulse. The scattering pulse is a counterstreaming linearly polarized Gaussian laser pulse with a dimensionless peak amplitude of
Figure 4.(a) Density distribution, (b) angular distribution, (c) energy distribution and (d) energy spectrum and brilliance of high-energy -photons with energy of more than 1 MeV at . Here, the magenta arrows in (a) denote the average transverse momentum of -photons at each cell. The black double-headed arrow in (b) denotes the polarization direction.
After the colliding laser is scattered, the photon energy increases by
3. Discussion
In order to investigate the OAM transfer during the laser–plasma interaction, we present the evolution of total energy and BAM of electrons and
Figure 5.(a) Evolution of energy and BAM for electrons and -photons. (b) Distribution of the average OAM along energy . (c) Spectrum of for electrons and -photons. Influence of the laser intensity on the (d) energy and BAM conversion efficiency and , (e) energy spectrum and (f) brilliance of -photons.
We provide in the following a simple model to explain the BAM transfer process. Here the average photon energy
We also investigate the evolution of the
4. Conclusions
In conclusion, we have proposed a new all-optical scheme to generate ultra-brilliant attosecond
References
[1] G. A. Mourou, T. Tajima, S. V. Bulanov. Rev. Mod. Phys., 78, 309(2006).
[2] A. Pukhov, J. Meyer-ter-Vehn. Appl. Phys. B, 74, 355(2002).
[3] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka. Nature, 431, 541(2004).
[4] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W. P. Leemans. Nature, 431, 538(2004).
[5] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, K. Krushelnick. Nature, 431, 535(2004).
[6] L. Plaja, L. Roso, K. Rzążewski, M. Lewenstein. J. Opt. Soc. Am. B, 15, 1904(1998).
[7] S. Cipiccia, M. R. Islam, B. Ersfeld, R. P. Shanks, E. Brunetti, G. Vieux, X. Yang, R. C. Issac, S. M. Wiggins, G. H. Welsh, M. Anania, D. Maneuski, R. Montgomery, G. Smith, M. Hoek, D. J. Hamilton, N. R. C. Lemos, D. Symes, P. P. Rajeev, V. O. Shea, J. M. Dias, D. A. Jaroszynski. Nat. Phys., 7, 867(2011).
[8] H. Schwoerer, J. Magill, B. Beleites. Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science, 217(2006).
[9] H. Toyokawa, S. Goko, S. Hohara, T. Kaihori, R. Kuroda, N. Oshima, M. Tanaka, M. Koike, A. Kinomura, H. Ogawa, N. Sei, R. Suzuki, T. Ohdaira, K. Yamada, H. Ohgaki. Nucl. Instrum. Methods Phys. Res. A, 608, s41(2009).
[10] G. Sarri, D. J. Corvan, W. Schumaker, J. M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. G. R. Thomas, M. Yeung, Z. Zhao, M. Zepf. Phys. Rev. Lett., 113, 224801(2014).
[11] J. C. Wood, D. J. Chapman, K. Poder, N. C. Lopes, M. E. Rutherford, T. G. White, F. Albert, K. T. Behm, N. Booth, J. S. J. Bryant, P. S. Foster, S. Glenzer, E. Hill, K. Krushelnick, Z. Najmudin, B. B. Pollock, S. Rose, W. Schumaker, R. H. H. Scott, M. Sherlock, A. G. R. Thomas, Z. Zhao, D. E. Eakins, S. P. D. Mangles. Sci. Rep., 8, 11010(2018).
[12] S. Y. Kalmykov, X. Davoine, I. Ghebregziabher, B. A. Shadwick. New J. Phys., 20, 023047(2018).
[13] Y. J. Gu, O. Klimo, S. V. Bulanov, S. Weber. Commun. Phys., 1, 93(2018).
[14] H. Z. Li, T. P. Yu, L. X. Hu, Y. Yin, D. B. Zou, J. X. Liu, W. Q. Wang, S. Hu, F. Q. Shao. Opt. Express, 25, 21583(2017).
[15] T. P. Yu, K. Liu, J. Zhao, X. L. Zhu, Y. Lu, Y. Cao, H. Zhang, F. Q. Shao, Z. M. Sheng. Rev. Mod. Plasma Phys., 8, 24(2024).
[16] J. X. Li, K. Z. Hatsagortsyan, B. J. Galow, C. H. Keitel. Phys. Rev. Lett., 115, 204801(2015).
[17] Y. Taira, T. Hayakawa, M. Katoh. Sci. Rep., 7, 5018(2017).
[18] X. L. Zhu, M. Chen, T. P. Yu, S. M. Weng, L. X. Hu, P. McKenna, Z. M. Sheng. Appl. Phys. Lett., 112, 174102(2018).
[19] Y. T. Hu, J. Zhao, H. Zhang, Y. Lu, W. Q. Wang, L. X. Hu, F. Q. Shao, T. P. Yu. Appl. Phys. Lett., 118, 054101(2021).
[20] J. Wang, X. B. Li, L. F. Gan, Y. Xie, C. L. Zhong, C. T. Zhou, S. P. Zhu, X. T. He, B. Qiao. Phys. Rev. Appl., 14, 014094(2020).
[21] X. M. Zhang, B. F. Shen, Y. Shi, X. F. Wang, L. G. Zhang, W. P. Wang, J. C. Xu, L. Q. Yi, Z. Z. Xu. Phys. Rev. Lett., 114, 173901(2015).
[22] L. B. Ju, C. T. Zhou, T. W. Huang, K. Jiang, C. N. Wu, T. Y. Long, L. Li, H. Zhang, M. Y. Yu, S. C. Ruan. Phys. Rev. Appl., 12, 014054(2019).
[23] Y. Y. Chen, J. X. Li, K. Z. Hatsagortsyan, C. H. Keitel. Phys. Rev. Lett., 121, 074801(2018).
[24] J. W. Wang, M. Zepf, S. G. Rykovanov. Nat. Commun., 10, 5554(2019).
[25] A. Denoeud, L. Chopineau, A. Leblanc, F. Quéré. Phys. Rev. Lett., 118, 033902(2017).
[26] N. S. Huang, H. X. Deng. Optica, 8, 1020(2021).
[27] S. V. Bulanov, T. Esirkepov, T. Tajima. Phys. Rev. Lett., 91, 085001(2003).
[28] K. T. Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, A. Rousse. Nat. Photonics, 6, 308(2012).
[29] E. Esarey, S. K. Ride, P. Sprangle. Phys. Rev. E, 48, 3003(1993).
[30] F. Y. Li, Z. M. Sheng, M. Chen, H. C. Wu, Y. Liu, J. Meyer-ter-Vehn, W. B. Mori, J. Zhang. Appl. Phys. Lett., 105, 161102(2014).
[31] W. C. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Z. Zhao, J. Zhang, C. Liu, M. Chen, S. Y. Chen, S. Banerjee, D. Umstadter. Nat. Photonics, 11, 514(2017).
[32] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Phys. Rev. A, 45, 8185(1992).
[33] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, L. O. Silva. Nat. Commun., 7, 10371(2016).
[34] S. Ali, J. R. Davies, J. T. Mendonca. Phys. Rev. Lett., 105, 035001(2010).
[35] T. V. Liseykina, S. V. Popruzhenko, A. Macchi. New J. Phys., 18, 072001(2016).
[36] M. G. Haines. Phys. Rev. Lett., 87, 135005(2001).
[37] J. Vieira, J. T. Mendonca. Phys. Rev. Lett., 112, 215001(2014).
[38] J. Zhao, Y. T. Hu, Y. Lu, H. Zhang, L. X. Hu, X. L. Zhu, Z. M. Sheng, I. C. E. Turcu, A. Pukhov, F. Q. Shao, T. P. Yu. Commun. Phys., 5, 15(2022).
[39] W. P. Wang, C. Jiang, H. Dong, X. M. Lu, J. F. Li, R. J. Xu, Y. J. Sun, L. H. Yu, Z. Guo, X. Y. Liang, Y. X. Leng, R. X. Li, Z. Z. Xu. Phys. Rev. Lett., 125, 034801(2020).
[40] W. P. Wang, C. Jiang, B. F. Shen, F. Yuan, Z. M. Gan, H. Zhang, S. H. Zhai, Z. Z. Xu. Phys. Rev. Lett., 122, 024801(2019).
[41] J. Vieira, J. T. Mendonca, F. Quéré. Phys. Rev. Lett., 121, 054801(2018).
[42] C. Jiang, W. P. Wang, S. Weber, H. Dong, Y. X. Leng, R. X. Li, Z. Z. Xu. High Power Laser Sci. Eng, 9, e44(2021).
[43] L. X. Hu, T. P. Yu, Y. Lu, G. B. Zhang, D. B. Zou, H. Zhang, Z. Y. Ge, Y. Yin, F. Q. Shao. Plasma Phys. Control. Fusion, 61, 025009(2019).
[44] W. Y. Zhang, L. X. Hu, Y. Cao, F. Q. Shao, T. P. Yu. Opt. Express, 32, 16398(2024).
[45] Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen, R. J. Kingham. Phys. Rev. Lett., 121, 145002(2018).
[46] D. Wu, J. W. Wang. Plasma Phys. Control. Fusion, 59, 095010(2017).
[47] L. X. Hu, T. P. Yu, Z. M. Sheng, J. Vieira, D. B. Zou, Y. Yin, P. McKenna, F. Q. Shao. Sci. Rep., 8, 7282(2018).
[48] L. X. Hu, T. P. Yu, H. Z. Li, Y. Yin, P. McKenna, F. Q. Shao. Opt. Lett., 43, 2615(2018).
[49] H. C. Wu, J. Meyer-ter-Vehn, J. Fernandez, B. M. Hegelich. Phys. Rev. Lett., 104, 234801(2010).
[50] J. P. Lin, T. Batson, J. Nees, A. G. R. Thomas, K. Krushelnick. Sci. Rep., 10, 18354(2020).
[51] C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S. Brady, K. Bennett, T. D. Arber, A. R. Bell. J. Comput. Phys., 260, 273(2014).
[52] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell. Plasma Phys. Controll. Fusion, 57, 113001(2015).
[53] Y. X. Han, Z. Y. Li, Y. B. Zhang, F. Y. Kong, H. C. Cao, Y. X. Jin, Y. X. Leng, R. X. Li, J. D. Shao. Nat. Commun., 14, 3632(2023).
[54] M. J. H. Luttikhof, A. G. Khachatryan, F. A. van Goor, K. J. Boller. Phys. Rev. Lett., 105, 124801(2010).
[55] J. Ferri, V. Horný, T. Fülöp. Plasma Phys. Control. Fusion, 63, 045019(2021).
[56] V. V. Kulagin, V. A. Cherepenin, M. S. Hur, H. Suk. Phys. Rev. Lett., 99, 124801(2007).
[57] H. Mizoguchi, H. Tomuro, Y. Nishimura, H. Hosoda, H. Nakarai, T. Abe, H. Tanaka, Y. Watanabe, Y. Shiraishi, T. Yanagiga, G. Soumagne, F. Iwamoto, S. Nagai, Y. Ueno, T. Suganuma, G. Niimi, T. Yabu, T. Yamada, T. Saitou. Proc. SPIE, 11854, 118540K(2021).
[58] A. P. L. Robinson, A. V. Arefiev, D. Neely. Phys. Rev. Lett., 111, 065002(2013).
[59] L. L. Ji, A. Pukhov, I. Yu Kostyukov, B. F. Shen, K. Akli. Phys. Rev. Lett., 112, 145003(2014).
Set citation alerts for the article
Please enter your email address