
- Chinese Optics Letters
- Vol. 18, Issue 8, 080005 (2020)
Abstract
Keywords
The ability of controlling and manipulating the rearrangement of molecules through external stimuli to obtain tunable and reversible structural characteristics is a major driving force towards the development of multifunctional devices. The cholesteric liquid crystal (CLC) or chiral nematic liquid crystal (LC) with self-organized helical superstructure and typical stimulus-response characteristics has undoubtedly served as a model system for better understanding orientation-related supramolecular dynamic helical structures and exploring their potential in technological applications[
As early as 50 years ago, Meyer and de Gennes[
In this Letter, we demonstrated the theoretical framework of the electrically induced CLC heliconical superstructure and employed numerical simulations to quantitatively evaluate the importance of the bend and twist elastic effects on the formation and tunability of the superstructure, as well as the evolution of pitch length and oblique angle. To further confirm the optical properties of the heliconical superstructure, we utilized the Berreman’s
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
The electric-field-induced LC director arrangement can be described by using the Oseen–Frank free energy function. The elastic energy density for the CLC helical superstructure is written as where
Figure 1.Schematic illustration of LC director configurations in cholesteric (a) helicoidal, (b) heliconical, and (c) unwound states under increased applied electric fields.
In the absence of an external electric field, the chirality from intermolecular interaction will guide the LC molecules to self-organize into a helicoidal superstructure, where the LC director twists at a right angle around the helical axis
The azimuth angle
For
The electric-field-induced CLC heliconical superstructure exists between the helicoidal superstructure and the unwound state with the corresponding applied electric field being located between the lower induction threshold
The CLC heliconical state demonstrated here is distant from the electric-induced layer undulation of the ordinary CLC, which usually exhibits fingerprint texture[
Then, we employed numerical calculations to quantitatively describe the phase diagram of the CLC heliconical superstructure and the importance of the
Figure 2.Electrical tuning performance of the (a) oblique angle
The initial chirality (or initial pitch length
Figure 3.Electrical tuning performance of the (a) transformation threshold, (b) oblique angle, and (c) pitch length in the heliconical superstructure on the effects of chirality changes.
The stronger the chirality of the system, the corresponding two threshold values both show a linear increasing trend, where the slopes are related to the elastic effect coupling. In the case of weak chirality, the dielectric torque dominates the orientation of LCs, and the system is more likely to unwind under the applied electric field. Therefore, the heliconical state can only exist within a limited electric-field range. In contrast, attributed to the comparable competition between elastic toque and dielectric torque under high chirality, the system establishes better stability and is difficult to be untwisted, so the electric-field range where the heliconical superstructure can exist is extended. Then, we assume that an electric field
Such delicate field-dependent pitch and oblique angle tunability endows the heliconical superstructure with a wide range of the periodicity and effective refractive index modulation in the spiral direction, thereby enabling selective control over the reflection band or the photonic band gap. To further evaluate the optical properties of the heliconical superstructure, we utilize Berreman’s 4 × 4 matrix method to numerically analyze the selective reflection properties, including the circular polarization selectivity of the structural reflection band, the reflective intensity, and the reflection band shifting under different electric fields. For hierarchical optical media, its precise transmission and reflection spectral properties can be directly calculated by Berreman’s
Consider a CLC system with the following parameters: chirality
Figure 4.Simulated selective reflection spectra from the left-handed heliconical superstructure with various electric fields in the cases of R-CP and L-CP normal incidence.
We also simulated the effect of initial chirality change on the corresponding reflection band while maintaining the external electric field. Taking
Figure 5.Calculated reflection spectra from the heliconical superstructure with the changes of electric field and initial chirality.
In conclusion, we have systematically described the phase transition in a cholesteric system in the presence of a longitudinal external field parallel to the helical axis. The unique heliconical superstructure appears between the right-angle helicoidal state and unwinding state under the external field in the CLC system equipped with the necessary elastic effect of
References
[1] Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, Q. Li. Nature, 531, 352(2016).
[2] Y. K. Kim, X. Wang, P. Mondkar, E. Bukusoglu, N. L. Abbott. Nature, 557, 539(2018).
[3] N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, H. Takezoe. Nat. Mater., 7, 43(2007).
[4] J. Kobashi, H. Yoshida, M. Ozaki. Nat. Photon., 10, 389(2016).
[5] L. Wang, A. M. Urbas, Q. Li. Adv. Mater., 1801335(2018).
[6] F. Zhai, Y. Feng, K. Zhou, L. Wang, Z. Zheng, W. Feng. J. Materi. Chem. C, 7, 2146(2019).
[7] Y. Huang, Y. Zhou, C. Doyle, S. T. Wu. Opt. Express, 14, 1236(2006).
[8] M. Mitov. Adv. Mater., 24, 6260(2012).
[9] H. P. Yu, B. Y. Tang, J. H. Li, L. Li. Opt. Express, 13, 7243(2005).
[10] L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, Q. Li. Adv. Mater., 29, 1700676(2017).
[11] M. Xu, F. Xu, D. K. Yang. J. Appl. Phys., 83, 1938(1998).
[12] V. Sharma, M. Crne, J. O. Park, M. Srinivasarao. Science, 325, 449(2009).
[13] W. J. Chung, J. W. Oh, K. Kwak, B. Y. Lee, J. Meyer, E. Wang, A. Hexemer, S. W. Lee. Nature, 478, 364(2011).
[14] P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, Y. Q. Lu. Nat. Commun., 10, 2518(2019).
[15] J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. Storey, C. T. Imrie, O. D. Lavrentovich, P. Palffy-Muhoray. Proc. Natl. Acad. Sci. USA, 113, 12925(2016).
[16] Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, D. Shen. J. Mater. Chem. C, 3, 2462(2015).
[17] L. J. Chen, Y. N. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li. Adv. Opt. Mater., 2, 845(2014).
[18] L. Wang, H. K. Bisoyi, Z. G. Zheng, K. G. Gutierrez-Cuevas, G. Singh, S. Kumar, T. J. Bunning, Q. Li. Mater. Today, 20, 230(2017).
[19] J. Qin, X. Q. Wang, C. Yuan, Z. Zheng, D. Shen. Liq. Cryst., 47, 255(2019).
[20] K. G. Gutierrez-Cuevas, L. Wang, Z. G. Zheng, H. K. Bisoyi, G. Li, L. S. Tan, R. A. Vaia, Q. Li. Angew. Chem. Int. Ed. Engl., 55, 13090(2016).
[21] M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, H. Yang. Adv. Funct. Mater., 27, 1702261(2017).
[22] T. H. Lin, H. C. Jau. Appl. Phys. Lett., 88, 061122(2006).
[23] V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. K. Yang, A. Voevodin, T. J. White, T. J. Bunning. J. Appl. Phys., 110, 053109(2011).
[24] R. B. Meyer. Appl. Phys. Lett., 12, 281(1968).
[25] P. De Gennes. Solid State Commun., 6, 163(1968).
[26] A. Matsuyama. Liq. Cryst., 45, 153(2017).
[27] D. K. Yang, S. T. Wu. Fundamentals of Liquid Crystal Devices,(2014).
[28] V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jakli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, O. D. Lavrentovich. Nat. Commun., 4, 2635(2013).
[29] G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, O. D. Lavrentovich. Phys. Rev. E, 96, 062704(2017).
[30] J. Xiang, S. V. Shiyanovskii, C. T. Imrie, O. D. Lavrentovich. Phys. Rev. Lett., 112, 217801(2014).
[31] O. S. Iadlovska, G. R. Maxwell, G. Babakhanova, G. H. Mehl, C. Welch, S. V. Shiyanovskii, O. D. Lavrentovich. Opt. Lett., 43, 1850(2018).
[32] J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. Storey, C. T. Imrie, O. D. Lavrentovich. Adv. Mater., 27, 3014(2015).
[33] M. Rumi, T. J. Bunning, T. J. White. Soft Matter, 14, 8883(2018).
[34] S. M. Salili, J. Xiang, H. Wang, Q. Li, D. A. Paterson, J. M. Storey, C. T. Imrie, O. D. Lavrentovich, S. N. Sprunt, J. T. Gleeson, A. Jakli. Phys. Rev. E, 94, 042705(2016).
[35] C. L. Yuan, W. Huang, Z. G. Zheng, B. Liu, H. K. Bisoyi, Y. Li, D. Shen, Y. Lu, Q. Li. Sci. Adv., 5, eaax9501(2019).
[36] J. J. Wu, Y. S. Wu, F. C. Chen, S. H. Chen. Jpn. J. Appl. Phys., 41, L1318(2002).
[37] J. S. Patel, R. B. Meyer. Phys. Rev. Lett., 58, 1538(1987).
[38] D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y. Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M. Walba, M. A. Glaser, J. E. Maclennan, N. A. Clark. Proc. Natl. Acad. Sci. USA, 110, 15931(2013).
[39] H. K. Bisoyi, Q. Li. Chem. Rev., 116, 15089(2016).
[40] H. K. Bisoyi, Q. Li. Angew. Chem. Int. Ed. Engl., 55, 2994(2016).
[41] D. W. Berreman. J. Opt. Soc. Am., 62, 502(1972).
[42] H. Wöhler, G. Haas, M. Fritsch, D. Mlynski. J. Opt. Soc. Am. A, 5, 1554(1988).

Set citation alerts for the article
Please enter your email address