
- Chinese Optics Letters
- Vol. 21, Issue 5, 051604 (2023)
Abstract
1. Introduction
Significant progress has been made in the development of solar-blind photodetectors (PDs) that operate in the ultraviolet (UV) wavelength range (200–280 nm) for a variety of applications, such as secure communication, missile guidance, environmental monitoring, UV astronomy, and position navigation[1–3]. Solar-blind PDs made of wide bandgap (WBG) semiconductors with bandgap (
To date,
Orthorhombic perovskite manganites in the form of
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Experiments
The commercial (001)-oriented
Figure 1.Schematic structure of the β-Ga2O3/LCMO pn junction APD.
3. Results
Figure 2(a) shows the X-ray diffraction (XRD) patterns of the LCMO layer and
Figure 2.(a) XRD patterns of β-Ga2O3/LCMO/STO (red line) and LCMO/STO (black line); (b) atomic diagram of cross section in the (100) direction of pn junction.
We then investigated the UV photoresponse performance of the APD with a
Figure 3.Solar-blind photoresponse characteristics of Ga2O3/LCMO APD. (a) I-V curves (log scale) in dark and under different light illumination (1–100 µW/cm2). The inset shows the I-V curves enlarged near −37 V. (b) Reverse I-V curves in dark and under 1 µW/cm2 254 nm light intensity; the right axis shows the multiplication gain values. (c) The light intensity-dependent photocurrent and responsivity at a reverse bias of 20 V. (d) Photoresponse spectrum at a reverse bias of 30 V.
The external quantum efficiency (EQE) and linear dynamic range (LDR) are two other important FOMs for assessing the performance of the APD. The EQE is the ratio of the number of carriers produced by the PD to the number of incident photons:
Figure 4.(a) Responsivity; (b) EQE; and (c) LDR of Ga2O3/LCMO pn junction APD under 1 µW/cm2 254 nm UV light intensity as a function of reverse bias.
4. Discussion
The photoresponse performance of an APD primarily determines its energy band alignment, specifically, the barrier height (
In LCMO, Mn exists in different valence states (
Figure 5.CL and valence band XPS energy spectrum of (a) LCMO (∼100 nm)/STO and (b) Ga2O3 (∼300 nm)/LCMO (∼100 nm)/STO; (c) CL XPS energy spectrum of Ga2O3 (∼3 nm)/LCMO (∼100 nm)/STO sample; (d) bandgap of Ga2O3 film; and (e) LCMO film determined by Tauc plots method; (f) band alignment at the Ga2O3/LCMO pn junction.
When a reverse bias is applied to a
Figure 6.Avalanche multiplication process of Ga2O3/LCMO APD.
5. Conclusion
In summary, the epitaxial
References
[1] X. Chen, F. Ren, S. Gu, J. Ye. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Res., 7, 381(2019).
[2] J. Chen, W. Ouyang, W. Yang, J. H. He, X. Fang. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Mater., 30, 1909909(2020).
[3] D. Kaur, M. Kumar. A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects. Adv. Opt. Mater., 9, 2002160(2021).
[4] X. Zhengyuan, B. M. Sadler. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag., 46, 67(2008).
[5] M. M. Fan, K. W. Liu, Z. Z. Zhang, B. H. Li, X. Chen, D. X. Zhao, C. X. Shan, D. Z. Shen. High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film. Appl. Phys. Lett., 105, 011117(2014).
[6] B. Liu, D. Chen, H. Lu, T. Tao, Z. Zhuang, Z. Shao, W. Xu, H. Ge, T. Zhi, F. Ren, J. Ye, Z. Xie, R. Zhang. Hybrid light emitters and UV solar-blind avalanche photodiodes based on III-nitride semiconductors. Adv. Mater., 32, e1904354(2020).
[7] X. Hou, Y. Zou, M. Ding, Y. Qin, Z. Zhang, X. Ma, P. Tan, S. Yu, X. Zhou, X. Zhao, G. Xu, H. Sun, S. Long. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications. J. Phys. D, 54, 043001(2021).
[8] Y.-J. Lu, C.-N. Lin, C.-X. Shan. Optoelectronic diamond: growth, properties, and photodetection applications. Adv. Opt. Mater., 6, 1800359(2018).
[9] Y. Yuan, W. Hao, W. Mu, Z. Wang, X. Chen, Q. Liu, G. Xu, C. Wang, H. Zhou, Y. Zou, X. Zhao, Z. Jia, J. Ye, J. Zhang, S. Long, X. Tao, R. Zhang, Y. Hao. Toward emerging gallium oxide semiconductors: a roadmap. Fundam. Res., 1, 697(2021).
[10] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A. Mastro. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev., 5, 011301(2018).
[11] X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu, Y. Qin, P. Tan, C. Chen, S. Yu, M. Ding, G. Xu, Q. Hu, S. Long. High-performance harsh-environment-resistant GaOx solar-blind photodetectors via defect and doping engineering. Adv. Mater., 34, 2106923(2022).
[12] N. Liu, T. Zhang, L. Chen, J. Zhang, S. Hu, W. Guo, W. Zhang, J. Ye. Fast-response amorphous Ga₂O₃ solar-blind ultraviolet photodetectors tuned by a polar AlN template. IEEE Electron Device Lett., 43, 68(2022).
[13] Y. Chen, Y. Lu, M. Liao, Y. Tian, Q. Liu, C. Gao, X. Yang, C. Shan. 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv. Funct. Mater., 29, 1906040(2019).
[14] B. Qiao, Z. Zhang, X. Xie, B. Li, K. Li, X. Chen, H. Zhao, K. Liu, L. Liu, D. Shen. Avalanche gain in metal-semiconductor-metal Ga2O3 solar-blind photodiodes. J. Phys. Chem. C, 123, 18516(2019).
[15] W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, L. B. Luo. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 28, 10725(2016).
[16] Y. Wang, Z. Yang, H. Li, S. Li, Y. Zhi, Z. Yan, X. Huang, X. Wei, W. Tang, Z. Wu. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Appl. Mater. Interfaces, 12, 47714(2020).
[17] Y. Wang, Y. Tang, H. Li, Z. Yang, Q. Zhang, Z. He, X. Huang, X. Wei, W. Tang, W. Huang, Z. Wu. p-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity. ACS Photonics, 8, 2256(2021).
[18] Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, W. Tang. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction. J. Mater. Chem. C, 5, 8688(2017).
[19] Y. Wang, W. Cui, J. Yu, Y. Zhi, H. Li, Z. Y. Hu, X. Sang, E. J. Guo, W. Tang, Z. Wu. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection. ACS Appl. Mater. Interfaces, 11, 45922(2019).
[20] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao. Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire. Nano Lett., 15, 3988(2015).
[21] Y. Wang, H. Li, J. Cao, J. Shen, Q. Zhang, Y. Yang, Z. Dong, T. Zhou, Y. Zhang, W. Tang, Z. Wu. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction. ACS Nano, 15, 16654(2021).
[22] X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, J. Ye. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase alpha-Ga2O3/ZnO isotype heterostructures. ACS Appl. Mater. Interfaces, 9, 36997(2017).
[23] Q. Zhang, N. Li, T. Zhang, D. Dong, Y. Yang, Y. Wang, Z. Dong, J. Shen, T. Zhou, Y. Liang, W. Tang, Z. Wu, Y. Zhang, J. Hao. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun., 14, 418(2023).
[24] W. E. Mahmoud. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol. Energy Mater. Sol. Cells, 152, 65(2016).
[25] M. B. Salamon, M. Jaime. The physics of manganites: structure and transport. Rev. Mod. Phys., 73, 583(2001).
[26] J. M. D. Coey, M. Viret, S. von Molnár. Mixed-valence manganites. Adv. Phys., 48, 167(1999).
[27] Z. Liao, M. Huijben, Z. Zhong, N. Gauquelin, S. Macke, R. J. Green, S. Van Aert, J. Verbeeck, G. Van Tendeloo, K. Held, G. A. Sawatzky, G. Koster, G. Rijnders. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater., 15, 425(2016).
[28] J. Yu, Y. Wang, H. Li, Y. Huang, W. Tang, Z. Wu. Tailoring the solar-blind photoresponse characteristics of β-Ga2O3 epitaxial films through lattice mismatch and crystal orientation. J. Phys. D, 53, 24LT01(2020).
[29] S. O. Kasap. Optoelectronics and Photonics: Principles and Practices(2012).
[30] M.-Q. Li, N. Yang, G.-G. Wang, H.-Y. Zhang, J.-C. Han. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application. Appl. Surf. Sci., 471, 694(2019).
[31] G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, D. Z. Shen. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Opt. Express, 23, 13554(2015).
[32] G. Greczynski, L. Hultman. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater Sci., 107, 100591(2020).
[33] Z. Liu, J. Yu, P. Li, X. Wang, Y. Zhi, X. Chu, X. Wang, H. Li, Z. Wu, W. Tang. Band alignments of β-Ga2O3 with MgO, Al2O3 and MgAl2O4 measured by X-ray photoelectron spectroscopy. J. Phys. D, 52, 295104(2019).

Set citation alerts for the article
Please enter your email address