
- Chinese Optics Letters
- Vol. 18, Issue 8, 083001 (2020)
Abstract
Carbon is a common element in the natural world. It is the fundamental composition of creatures on the earth. Moreover, carbon also plays important roles in human activity[
Laser-induced breakdown spectroscopy (LIBS) is a promising spectrometry based on laser ablation, in which elemental information is deduced by analyzing the spectrum emitting from laser-induced plasma on samples[
LIBS assisted with laser-induced fluorescence (LIBS-LIF) is a powerful modification to enhance the LIBS atomic spectrum by 2–3 orders of magnitude[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
The schematic diagram of the experimental setup in this work is shown in Fig.
Figure 1.Experimental setup in this work.
Regardless of fine-structure energy levels in molecular rotation, the CN radicals in different electronic and vibrational levels can be described by molecular Boltzmann distribution:
Therefore, the population in different vibrational levels of the ground level
The relative populations depending on temperature according to Eq. (
Figure 2.Relative population and its first derivative of CN radicals in
The transitions of the violet system (
Figure 3.Spectra of the
Generally, the excitation laser is focused on the plasma center, where the highest particle density locates. But, the CN radical behaves differently in the plasma, whose forming process needs a nitrogen source provided by the ambient gas (air). The chemical reaction process is shown in Fig.
Figure 4.Process of laser-induced CN fluorescence in LIBS: (a) ablation, (b) atomization, (c) combination, and (d) excitation.
To make a demonstration, an XY coordinate system is defined and shown in Fig.
Figure 5.Self-defined XY coordinate system on the plasma.
Combining the fluorescent intensities and the excitation location information, a map is established in Fig.
Figure 6.Intensity map of CN
At the top of the periphery (point B,
In summary, a new approach of periphery excitation was proposed to further improve carbon sensitivity in LIBS-LIF. Conventionally, the excitation location is at the plasma center. However, carbon and nitrogen combined at the plasma periphery because the nitrogen source was provided by the ambient gas. The spatial characteristic of resonant excitation at the plasma was investigated, demonstrating that the periphery excitation had 4.2 times stronger fluorescence than the center excitation. The LIF enhancement factor was optimized to 1281. This Letter provides an effective method to realize high sensitivity for carbon detection in LIBS. Further investigation on detailed mechanism and simulation of CN spatial characteristics under different experimental conditions will be conducted in the future.
References
[1] Z. Dong, R. Xu, W. Zhang, H. Guoyu, L. Hua, J. Tian, Y. Song. Chin. Opt. Lett., 16, 081402(2018).
[2] D. Codron, J. Codron, J. A. Lee-Thorp, M. Sponheimer, D. de Ruiter, J. Sealy, R. Grant, N. Fourie. J. Zool., 273, 21(2007).
[3] B. Thomas, S. Taylor. Expert Rev. Proteom., 16, 881(2019).
[4] A. Novara, L. Gristina, G. Sala, A. Galati, M. Crescimanno, A. Cerdà, E. Badalamenti, T. La Mantia. Sci. Total Environ., 576, 420(2017).
[5] Y. Román Gómez, R. Cabanzo Hernández, J. E. Guerrero, E. Mejía-Ospino. Fuel, 226, 536(2018).
[6] C. Borchers, M. Lenz, M. Deutges, H. Klein, F. Gärtner, M. Hammerschmidt, H. Kreye. Mater. Design, 89, 369(2016).
[7] C. Shen, N. Zhao, J. Pribošek, M. Ma, L. Fang, X. Huang, Y. Zhang. Chin. Opt. Lett., 17, 123002(2019).
[8] H. Guo, Z. Zhu, T. Wang, N. Chen, Y. Liu, J. Zhang, H. Sun, J. Liu, R. Li. Chin. Opt. Lett., 16, 033201(2018).
[9] R. Wiens, S. Maurice, J. Lasue, O. Forni, R. Anderson, S. Clegg, S. Bender, D. Blaney, B. Barraclough, A. Cousin. Spectrochim. Acta B, 82, 1(2013).
[10] L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, L. F. Qi. Spectrochim. Acta B, 112, 40(2015).
[11] J. Guo, A.-S. Mahmoud, N. Li, J. Song, R. Zheng. Plasma Sci. Technol., 21, 034022(2019).
[12] R. X. Yi, L. B. Guo, X. H. Zou, J. M. Li, Z. Q. Hao, X. Y. Yang, X. Y. Li, X. Y. Zeng, Y. F. Lu. Opt. Express, 24, 2607(2016).
[13] G. S. Maurya, R. Kumar, A. Kumar, A. K. Rai. Spectrochim. Acta B, 126, 17(2016).
[14] X. Jiang, P. Hayden, J. T. Costello, E. T. Kennedy. Spectrochim. Acta B, 101, 106(2014).
[15] V. Sturm, L. Peter, R. Noll. J. Appl. Spectrosc., 54, 1275(2000).
[16] M. A. Khater, J. T. Costello, E. T. Kennedy. J. Appl. Spectrosc., 56, 970(2002).
[17] M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard. Spectrochim. Acta B, 56, 661(2001).
[18] L. Peter, V. Sturm, R. Noll. Appl. Opt., 42, 6199(2003).
[19] S. M. Zaytsev, A. M. Popov, N. B. Zorov, T. A. Labutin. Spectrochim. Acta B, 118, 37(2016).
[20] T. A. Labutin, S. M. Zaytsev, A. M. Popov, N. B. Zorov. Opt. Express, 22, 22382(2014).
[21] S. Sheta, M. S. Afgan, Z. Hou, S.-C. Yao, L. Zhang, Z. Li, Z. Wang. J. Anal. At. Spectrom., 34, 1047(2019).
[22] M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, P. Laloi. Appl. Phys. Lett., 88, 063901(2006).
[23] S. Barbier, S. Perrier, P. Freyermuth, D. Perrin, B. Gallard, N. Gilon. Spectrochim. Acta B, 88, 167(2013).
[24] J. Li, X. Liu, X. Li, Q. Ma, N. Zhao, Q. Zhang, L. Guo, Y. Lu. Opt. Laser Eng., 124, 105834(2020).
[25] J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, Y. Lu. Anal. Chem., 89, 8134(2017).
[26] Z. H. Zhu, J. M. Li, Z. Q. Hao, S. S. Tang, Y. Tang, L. B. Guo, X. Y. Li, X. Y. Zeng, Y. F. Lu. Opt. Express, 27, 470(2019).
[27] R. W. B. Pearse, A. G. Gaydon, R. W. B. Pearse, A. G. Gaydon. The Identification of Molecular Spectra(1976).
[28] X. Bai, F. Cao, V. Motto-Ros, Q. Ma, Y. Chen, J. Yu. Spectrochim. Acta B, 113, 158(2015).
[29] Y. Tian, E. B. Sokolova, R. G. Zheng, Q. L. Ma, Y. P. Chen, J. Yu. Spectrochim. Acta B, 114, 7(2015).

Set citation alerts for the article
Please enter your email address