
- Chinese Optics Letters
- Vol. 20, Issue 2, 023801 (2022)
Abstract
1. Introduction
A ring-shaped focus with a uniform hollow light distribution has an important role in the fields of optical tweezers [
Researches have made tremendous achievements in multi-dimensional manipulation of wave fields based on artificial microstructures[
Here, we present a novel annular-vortex beam (AVB). The AVB is generated by adding the phase of vortex and annular Fresnel lens together. The AVB has the advantages of changeable diameter, high uniformity, and being not affected by the zeroth-order beam (ZOB). The ZOB is an undesired intensity distribution in the center of focus, which mainly has two causes: the deadzone between active pixels and the unmodified reflected energy[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
In this Letter, optical vortices are generated by imprinting a helical phase on an incident femtosecond laser beam using a liquid crystal phase only SLM. The focusing properties of optical vortices are investigated with the Debye vectoral diffraction theory[
2. Experiments and Methods
The generation principle of AVB is shown in Fig. 1. A ring-shaped focus can be generated by a conventional vortex beam containing a chiral wavefront or an annular Fresnel lens with a plane wavefront. For the former one, the diameter of ring-shaped focus can be adjusted by the topological charge of the vortex beam, as shown in Fig. 1(b). According to the simulation, the diameters of foci are almost linear to the topological charges. However, both the diameter and the azimuthal energy flow are related to the topological charge, making the diameter unable to be individually changed without affecting the chiral characteristics.
Figure 1.(a) Generation schematic of AVB. (b) Simulated foci of vortex beam, AB, and AVB. (c) Diameter of ring-shaped focus versus the topological charge of vortex beams, and widths of zeroth-order AB and AVB.
On the other hand, the annular beam (AB) generated by the annular Fresnel lens does not contain a chiral wavefront. But, the diameter of the AB can be adjusted in a wider range compared to the vortex beam. Here, by multiplexing the vortex phase with an annular Fresnel lens, an AVB is presented, which contains chiral energy flow and wider diameter range. Meanwhile, the change of focus diameter does not relate to the topological charge of the vortex beam, which means the diameter of the ring-shaped focus and the chiral energy flow can be controlled individually. The unique property may find potential applications in the fields of optical tweezers and microfabrication. The generation of AVB is shown in Fig. 1(a), and the phase of the annular Fresnel lens is multiplexed to a vortex phase.
The mathematical expression of AVB can be written as follows:
As the modulation range of SLM used in the following experiment is from 0 to
The corresponding simulated intensity distribution of the ring-shaped focus is shown at the bottom of Fig. 1(b). It can be clearly seen that there is almost no energy distribution in the center of the AVB, which means that the AVB does not suffer from the influence of the ZOB. The diameters of vortex beams, ABs, and AVBs are almost also linear to the topological charges and the zeroth-order width of the annular Fresnel lens, respectively [Fig. 1(c)].
3. Results
To further analyze the principle of AVB, the intensity distribution has been investigated in both experiment and simulation. Figure 2(a) shows a schematic diagram of the experimental setup for femtosecond laser TPP fabrication.
Figure 2.(a) Experimental setup of AVB-based fabrication system. The right is the simulated intensity distribution along the propagation direction. (b) Simulated and (c) experimentally tested intensity distributions in different planes corresponding to dashed lines shown in (a).
The laser source is a mode-locked Ti:sapphire ultrafast oscillator (Coherent, Chamleon Vision-S) with the central wavelength of 800 nm, pulse duration of 75 fs, and repetition rate of 80 MHz. After passing a beam collimation system with a
AVBs are characterized by two parameters: the zero-order width and the topological charge. Both affect the diameter of the ring-shaped focus. To further investigate the optical principles of AVBs, a series of AVBs with different zero-order width has been studied. The diameter of the ring-shaped focus can be adjusted by changing the zero-order width when the charge number is fixed. Figure 3(a) shows the phase of AVBs with different diameters. The charge numbers of AVBs in Fig. 3(a) are fixed to five. The simulation results are shown in Fig. 3(b), proving that the diameters (which are 18.0 µm, 15.3 µm, 13.0 µm, 10.7 µm, and 8.4 µm, respectively) are related to the zero-order width of the AVB, and the resolutions of the donut focus remain constant. Meanwhile, the ZOB does not appear in the center of the light field, which means it does not need to shift the ZOB away from the center of the pattern by a blazed grating. The measured light fields agree well with the simulation ones, as shown in Fig. 3(c). In the measured results, the diameters of foci are 25.4 µm, 20.6 µm, 16.6 µm, 13.0 µm, and 9.9 µm, respectively. The top-right corner of the donut focus is relatively darker than other parts. This phenomenon is caused by some small deviations in the optical setup, such as the peak of the incident Gaussian beam not illuminating the exact center of the SLM, or the slight misalignment of the beam axis from the vertical axis of the photoresist surface.
Figure 3.(a) Phase of AVBs with different zero-order width. (b) Simulation intensity distribution of ring-shaped focus with different diameters. (c) Experimental intensity distribution of ring-shaped focus with different diameters. (d) SEM images of microtubes fabricated by single exposure of AVBs with different diameters. (e) Comparison of processing time between the single-exposure method and single-point scanning method. (f) Comparison of diameters of simulated ring-shaped foci, experimentally tested ring-shaped foci, and fabricated microstructures. Scale bars are 20 µm.
The AVBs are further applied in rapidly fabricating tubular microstructures, as shown in Fig. 3(d). Microrings with different diameters of 22.1 µm, 17.3 µm, 14.1 µm, 11.0 µm, and 8.5 µm are fabricated by exposing the corresponding AVBs. The exposure time required to process the microstructure from the left to the right in Fig. 3(d) is 500 ms, 400 ms, 300 ms, 200 ms, and 100 ms, when the incident laser power is maintained at 800 mW. Microrings with larger diameters require more exposure time, as the energy density of those is weaker than that with smaller diameters. It can be seen the diameters of fabricated microstructures are linear to the zero-order width, as the simulations show before. The microring arrays are fabricated by exposing AVBs [Fig. 3(e)], showing that the consistency of microstructures keeps well. Benefiting from the high fabrication efficiency of AVBs, the processing time of a tube array is saved by a few times to even dozens of times, as shown in Fig. 3(e). More than that, the diameters of the simulation light field, experimentally tested light field, and fabricated microrings are almost the same, as shown in Fig. 3(f).
The AVB can not only carry the vortex phase with integer charge number, but can also carry that with the fractional charge number. By varying the topological charges, the optical fields with different gap sizes are realized. The generation principle is similar to that with an integer charge number, as shown in Fig. 4(a), and the phase of the annular Fresnel lens and the frictional topological charges are added, followed by a remainder of
Figure 4.(a) Generation principle of AVB with fractional topological charge. (b) Simulated gap-ring focus distribution. (c) Experimentally tested gap-ring focus distribution. The topological charges vary from 5.1 to 5.5 in (b) and (c). (d)–(h) SEM images of micro gap rings fabricated by single exposure of gap-ring focus. The top right corners are the corresponding foci. Scale bar is 10 µm. (i) Relationship between the gap size of fabricated microrings and the topological charges.
The simulation of intensity distribution of the focus is shown in Fig. 4(b). The size of gaps increases with the topological charges increasing from 5.1 to 5.5. The diameters of the gap rings are not obviously affected by the topological charge, as the topological charge only changes in a small range. The focus distribution is also tested in experiment, as shown in Fig. 4(c). The simulation results are in good agreement with the experimental ones.
4. Conclusion
In conclusion, we demonstrate a method for rapid fabrication of microrings with different diameters based on the AVBs. First, AVBs are simply realized by loading holograms with the combination of vortex beams and ABs. The diameter of AVBs can be flexibly controlled in a wide range with no ZOB in the center of the focus. Then, we are able to fabricate microrings with different diameters by a single exposure of focused AVBs. Finally, the AVBs with fractional topological charge have been generated. Since the topological charge AVB is not an integer, the intensity distribution of that is a hollow structure with controllable slits. The novel method developed in this work deepens the research into the flexible and fast TPP fabrication technique, and the fabricated microrings with slits are suitable for the number of important applications, such as artificial blood vessels and biomechanical research of blood cells.
References
[1] Y. S. Liang, Y. A. Cai, Z. J. Wang, M. Lei, Z. L. Cao, Y. Wang, M. M. Li, S. H. Yan, P. R. Bianco, B. L. Yao. Aberration correction in holographic optical tweezers using a high-order optical vortex. Appl. Opt., 57, 3618(2018).
[2] J. Fischer, M. Wegener. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev., 7, 22(2013).
[3] Y. Xu, L. X. Guo, M. J. Cheng, J. T. Li. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication. Opt. Express, 26, 12605(2018).
[4] R. J. Winfield, B. Bhuian, S. O’Brien, G. M. Crean. Refractive femtosecond laser beam shaping for two-photon polymerization. Appl. Phys. Lett., 90, 111115(2007).
[5] H. Lin, M. Gu. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl. Phys. Lett., 102, 084103(2013).
[6] S. Zhang, Y. Li, Z. Liu, J. Ren, Y. Xiao, H. Yang, Q. Gong. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phys. Lett., 105, 061101(2014).
[7] C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, W. Huang. A rapid two-photon fabrication of tube array using an annular Fresnel lens. Opt. Express, 22, 3983(2014).
[8] S. Y. Ji, L. Yang, Y. L. Hu, J. C. Ni, W. Q. Du, J. W. Li, G. Zhao, D. Wu, J. R. Chu. Dimension-controllable microtube arrays by dynamic holographic processing as three-dimensional yeast culture scaffolds for asymmetrical growth regulation. Small, 13, 701190(2017).
[9] K. K. Anoop, R. Fittipaldi, A. Rubano, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, S. Amoruso. Direct femtosecond laser ablation of copper with an optical vortex beam. J. Appl. Phys., 116, 113102(2014).
[10] L. Chen, R. K. Singh, A. Dogariu, Z. Chen, J. X. Pu. Estimating topological charge of propagating vortex from single-shot non-imaged speckle. Chin. Opt. Lett., 19, 022603(2021).
[11] Z. Yan, M. H. Hong. Formation of polarization-dependent optical vortex beams via an engineered microsphere. Opt. Express, 29, 11121(2021).
[12] Y. Liang, D. D. Qian, C. Xin, Z. J. Hu, S. Y. Ji, D. Wu, Y. L. Hu, J. W. Li, W. H. Huang, J. R. Chu. Direct laser writing of complex microtubes using femtosecond vortex beams. Appl. Phys. Lett, 110, 221103(2017).
[13] C. Wang, Y. Ren, T. Liu, L. L. Chen, S. Qiu. New kind of Hermite–Gaussian-like optical vortex generated by cross phase. Chin. Opt. Lett., 18, 100501(2020).
[14] Y. B. Zhang, H. Liu, H. Cheng, J. G. Tian, S. Q. Chen. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron. Adv., 3, 200002(2020).
[15] J. E. Curtis, D. G. Grier. Structure of optical vortices. Phys. Rev. Lett., 90, 133901(2003).
[16] P. Li, S. Liu, T. Peng, G. Xie, X. Gan, J. Zhao. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Opt. Express, 22, 7598(2014).
[17] M. Luo, Z. Wang. Fractional vortex ultrashort pulsed beams with modulating vortex strength. Opt. Express, 27, 36259(2019).
[18] J. Li, H. G. Liu, Y. Li, X. P. Wang, M. H. Sang, X. F. Chen. Directly generating vortex beams in the second harmonic by a spirally structured fundamental wave. Chin. Opt. Lett., 19, 060005(2021).
[19] O. Hernandez, M. Guillon, E. Papagiakoumou, V. Emiliani. Zero-order suppression for two-photon holographic excitation. Opt. Lett., 39, 5953(2014).
[20] C. W. Wang, Y. L. Hu, L. Yang, S. L. Rao, Y. L. Wang, D. Pan, S. Y. Ji, C. C. Zhang, Y. H. Su, W. L. Zhu, J. W. Li, D. Wu, J. R. Chu. Femtosecond Mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano, 13, 4667(2019).
[21] M. Gu. Advanced Optical Imaging Theory(2000).
[22] J. G. Hua, H. Ren, A. Jia, Z. N. Tian, L. Wang, S. Juodkazis, Q. D. Chen, H. B. Sun. Convex silica microlens arrays via femtosecond laser writing. Opt. Lett., 45, 636(2020).
[23] Y. C. Jia, S. X. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020).

Set citation alerts for the article
Please enter your email address