
- Chinese Optics Letters
- Vol. 20, Issue 3, 031602 (2022)
Abstract
1. Introduction
Persistent luminescence (PersL) phosphors own an interesting phenomenon where luminescence lasts for hours, even a few days, after the cessation of excitation[
For the NIR PersL phosphors,
The
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Herein, a wavelength-tunable BGO:Cr PersL phosphor was firstly developed by the solid-state synthesis method. The luminescence of BGO was transformed from a wide blue emission to an NIR emission after doping Cr. The emission wavelengths and luminescence intensity of the BGO:Cr PersL phosphors were adjusted by varying the doping amount of
2. Experiments
The experiment section is provided in Supplementary Materials.
3. Experimental Results and Analysis
3.1. Influence of
Figure 1 shows the emission spectra of the
Figure 1.Emission spectra of BaGa2O4:Crx (x = 0, 0.006, 0.02, 0.04, 0.06, 0.08, and 0.10) PersL phosphors.
Figure 2.PersL curves of BaGa2O4, BaGa2O4:Cr0.06, and Ba0.14Ga2O4:Cr0.06 PersL phosphors.
The optical properties of
Here,
The composition ratio affected the crystal structure and luminescence properties of the PersL phosphors[
The decay curves can be well fitted to a three-exponential equation, as follows[
Samples | ||||||||
---|---|---|---|---|---|---|---|---|
3.90 | 406.06 | 0.66 | 12,172.33 | 31.50 | 52.53 | 5.09 | 0.9997 | |
4.06 | 1786.91 | 15.79 | 385.69 | 79.72 | 112.63 | 36.37 | 0.9997 | |
5.92 | 4722.47 | 20.66 | 1105.57 | 90.89 | 359.05 | 41.21 | 0.9998 |
Table 1. Parameters of Afterglow Decay Curve Fitting
The NIR afterglow images (Figs. S1 and S2 in Supplementary Materials) of
3.2. Structure and particle analysis of BGO:Cr
Figure 3 shows the X-ray diffraction (XRD) patterns of the
Figure 3.XRD patterns of BaGa2O4:Crx (x = 0, 0.006, 0.02, 0.04, 0.06, 0.08, and 0.10) PersL phosphors.
There was only the diffraction peak of
The energy-dispersive X-ray spectroscopy (EDS) profiles of the
The
3.3. Mechanism of PersL of BGO:Cr
The thermoluminescence (TL) measurements were carried out and are portrayed in Fig. 4(a), which is with broadband ranging from 35°C to 225°C and a peak of 106°C. The half-width method was implemented to estimate the electron-trap-level depth of the
Figure 4.(a) Thermoluminescence glow curve of BaGa2O4:Cr0.06 PersL phosphor; (b) NIR PersL mechanism in the BGO:Cr PersL phosphors.
Figure 4(b) shows the schematic energy diagram for demonstrating the PersL mechanism in the
3.4. Information storage property of BGO:Cr
The potential application of BGO:Cr in information storage was tested. The information (the letter K) was first restored by the photo-mask-protected illumination of 254 nm light, and then the afterglows were captured. As shown in Fig. 5,
Figure 5.Read-out (room temperature) pattern at (a) 5 min, (b) 10 min, (c) 30 min, and (d) 1 h after 254 nm UV light for 2 min.
4. Conclusion
In conclusion, a novel NIR emitting wavelength-tunable BGO:Cr PersL phosphor was developed, and the application possibility of BGO:Cr phosphor in optical information storage was demonstrated. The developed BGO:Cr is expected to become a new medium for developing next-generation storage systems in the future.
References
[1] J. Hölsä. Persistent luminescence beats the afterglow: 400 hundred years of persistent luminescence. Electrochem. Soc. Interface, 18, 42(2009).
[2] Z. J. Zhang, W. Li, N. Ma, X. Y. Huang. High-brightness red-emitting double-perovskite phosphor Sr2LaTaO6:Eu3+ with high color purity and thermal stability [Invited]. Chin. Opt. Lett., 19, 030003(2021).
[3] Y. X. Zhuang, Y. Lv, L. Wang, W. W. Chen, T. L. Zhou, T. Takashi, H. Naoto, R. J. Xie. Trap depth engineering of SrSi2O2N2: Ln2+,Ln3+(Ln2+=Yb, Eu; Ln3+=Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Interfaces, 10, 1854(2018).
[4] B. Wang, Z. K. Chen, X. S. Li, J. C. Zhou, Q. G. Zeng. Photostimulated near-infrared persistent luminescence Cr3+-doped Zn-Ga-Ge-O phosphor with high QE for optical information storage. J. Alloys Compd., 812, 152119(2020).
[5] Y. Zhan, Y. Jin, H. Wu, L. Yuan, G. Ju, Y. Lv, Y. Hu. Cr3+-doped Mg4Ga4Ge3O16 near-infrared phosphor membrane for optical information storage and recording. J. Alloys Compd., 777, 991(2019).
[6] P. F. Smet, I. Moreels, Z. Hens, D. Poelman. Luminescence in sulfides: a rich history and a bright future. Materials, 3, 2834(2010).
[7] P. F. Smet, K. V. D. Eeckhout, D. Poelman. Persistent luminescence in non-Eu2+-doped compounds: a review. Materials, 6, 2789(2013).
[8] V. Kahlenberg, R. X. Fischer, J. B. Parise. The stuffed framework structure of BaGa2O4. J. Solid State Chem., 154, 612(2000).
[9] L. L. Noto, D. Poelman, V. R. Orante-Barrón, H. C. Swart, L. E. Mathevula, R. Nyenge, M. Chithambo, B. M. Mothudi, M. S. Dhlamini. Photoluminescence and thermoluminescence properties of BaGa2O4. Physica B, 535, 268(2018).
[10] H. F. Wang, X. Chen, F. Feng, X. Ji, Y. Zhang. EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr3+-doped zinc gallate. Chem. Sci., 9, 8923(2018).
[11] H. Li, J. Cai, R. Pang, G. Liu, S. Zhang, L. Jiang, D. Li, C. Li, J. Feng, H. Zhang. Strategy for developing thermal-quenching-resistant emitting and super-long persistent luminescence in BaGa2O4:Bi3+. J. Mater. Chem. C, 7, 13088(2019).
[12] X. Q. Zhou, G. F. Ju, T. S. Dai, Y. Li, H. Y. Wu, Y. H. Jin, Y. H. Hu. Strontium substitution enhancing a novel Sm3+-doped barium gallate phosphor with bright and red long persistent luminescence. J. Lumin., 218, 116820(2019).
[13] A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, D. Gourier. ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. Opt. Express, 19, 10131(2011).
[14] F. Liu, Y. J. Liang, Z. W. Pan. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+, Yb3+, Er3+ phosphor. Phys. Rev. Lett., 113, 177401(2014).
[15] O. Q. D. Clercq, L. I. D. J. Martin, K. Korthout, J. Kusakovskij, H. Vrielinck, D. Poelman. Probing the local structure of the near-infrared emitting persistent phosphor LiGa5O8:Cr3+. J. Mater. Chem. C, 5, 10861(2017).
[16] N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, K. R. Priolkar. Red persistent luminescence in MgGa2O4:Cr3+: a new phosphor for in vivo imaging. J. Phys. D, 46, 375401(2013).
[17] J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, P. S. Doyle. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater., 13, 524(2014).
[18] H. Lee, J. Kim, H. Kim, J. Kim, S. Kwon. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat. Mater., 9, 745(2010).
[19] Y. Gao, B. N. Wang, L. Liu, K. Shinozaki. Near-infrared engineering for broad-band wavelength-tunable in biological window of NIR-II and -III: a solid solution phosphor of Sr1-xCaxTiO3:Ni2+. J. Lumin., 238, 118235(2021).
[20] M. Grinberg, P. I. Macfarlane, B. Henderson, K. Holliday. Inhomogeneous broadening of optical transitions dominated by low-symmetry crystal-field components in Cr3+-doped gallogermanates. Phys. Rev. B, 52, 3917(1995).
[21] Y. Li, Y. Y. Li, R. C. Chen, K. Sharafudeen, S. F. Zhou, M. Gecevicius, H. H. Wang, G. P. Dong, Y. L. Wu, X. X. Qin, J. R. Qiu. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. Npg Asia Mater., 7, e180(2015).
[22] T. A. Safeera, J. Johny, S. Shaji, Y. T. Nien, E. I. Anila. Impact of activator incorporation on red emitting rods of ZnGa2O4:Cr3+ phosphor. Mater. Sci. Eng. C, 94, 1037(2019).
[23] Y. X. Zhuang, J. Ueda, S. Tanabe. Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping. Appl. Phys. Express, 6, 52602(2013).
[24] D. Q. Chen, Y. Chen, H. W. Lu, Z. G. Ji. A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg. Chem., 53, 8638(2014).
[25] X. M. Li, S. S. Zhou, R. F. Wei, X. Y. Liu, B. Q. Cao, H. Guo. Blue–green color-tunable emissions in novel transparent Sr2LuF7:Eu/Tb glass-ceramics for WLEDs. Chin. Opt. Lett., 18, 051601(2020).
[26] C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, J. P. Remeika. Luminescence from β-Ga2O3:Cr3+. J. Lumin., 40, 103(1988).
[27] M. D. Que, W. X. Que, T. Zhou, J. Y. Shao, L. B. Kong. Enhanced photoluminescence property of sulfate ions modified YAG:Ce3+ phosphor by co-precipitation method. J. Rare Earths, 35, 217(2017).
[28] J. S. Kim, J. S. Kim, H. L. Park. Optical and structural properties of nanosized ZnGa2O4:Cr3+ phosphor. Solid State Commun., 131, 735(2004).
[29] Z. S. Liu, X. P. Jing, L. X. Wang. Luminescence of native defects in Zn2GeO4. J. Electrochem. Soc., 154, H500(2007).
[30] Z. W. Pan, Y. Y. Lu, F. Liu. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater., 11, 58(2012).

Set citation alerts for the article
Please enter your email address