
- Chinese Optics Letters
- Vol. 19, Issue 11, 112601 (2021)
Abstract
1. Introduction
Liquid crystal (LC) is an excellent electro-optic material with an intermediate structure between liquids and crystalline solids. It possesses large optical anisotropy, and its optical properties can be easily modified by moderate external fields, allowing amplitude and phase modulations of light. LC display based on modulations of the amplitude or polarization of light has turned out to be a big commercial success. Meanwhile, many novel non-display applications of LC devices have been explored in the field of photonics[
Vector fields[
This review focuses on different LC elements and their roles in the efficient generation and active control of VVBs. First, we introduce several typical LC optical elements that have been widely used and briefly review recent experimental progress on controlling vector beams. Then, we talk about novel photonic applications in the quantum domain enabled by LC devices.
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Manipulation of VVBs by LC Devices
2.1. Patterned nematic LC optical elements
Figure 1.(a) Three examples of q-plate patterns with α0 being the initial optical axis orientation, reprinted with permission from Ref. [
Nematic LCs behave optically as uniaxial birefringent media. The director orientation can be controlled externally through electrical biases, optical fields, or surface interactions. Commercially available
VVBs can be obtained by simply using a non-circular polarization input beam passing through a
Figure 2 shows a typical experimental setup to generate and analyze VVBs[
Figure 2.Experimental scheme to generate and analyze VBBs[
Various schemes have been implemented to realize arbitrary VBBs using the LC
2.2. Patterned cholesteric liquid crystal optical elements
Cholesteric LC (CLC) is a liquid crystalline phase where the rod-like molecules self-assemble into a periodic helical structure and form a natural one-dimensional (1D) soft photonic crystal. The chiral superstructures exhibit a broadband Bragg reflection with unique circular-polarization (spin) selectivity, so it is polychromatic and does not require tuning to maximize the conversion efficiency. Thus, it supplies a new platform for broadband reflective geometric phase manipulation[
For a long time, the vector beam generation has not been announced by the CLC
Figure 3.Different schemes to generate vector beams using CLC. (a) Generic mirror-backed Bragg–Berry optical element, reprinted with permission from Ref. [
2.3. Self-assembled defects
LCs are capable of self-assembly due to their orientation elasticity, and spontaneously formed LC topological defects under external fields offer a nature-assisted route to the creation of geometric phase optical elements. Through exploitation of topological defects, optical vortex generation can be achieved by the transfer of the topological singularity from the director structure to the light phase[
Migara et al. demonstrated a simple method to create a stable and rewritable defect in a vertically aligned LC cell using external point pressure, and such an LC defect also serves as
Figure 4.Experimental scheme to generate self-engineered LC q-plates. Reprinted with permission from Ref. [
Self-assembled topological defects could also operate as a nonlinear protocol to manipulate high-dimensional spin-orbit optical states. In practice, a
Compared to patterned nematic or CLC
2.4. Liquid-crystal spatial light modulators
Spatial light modulators (SLMs) are pixelated devices, and each pixel can be programmed to introduce certain phase delay to the output light. SLMs allow for real-time manipulation of both the phase and amplitude of light field by computer-generated holograms. It has become a powerful tool for on-demand generation and analysis of arbitrary optical modes[
The basic principle to generate VVBs is by using a phase-only SLM based on the superposition of two components with the orthogonal circular polarization basis[
Figure 5.Experimental setups for generating vector beams using SLMs. (a) Experimental setup for generating arbitrary vector beams via a triangular common-path interferometer[
Besides the efforts to optimize the generation efficiency of the structured light through SLM, simultaneous generation of many vector beams using a single digital hologram was pursued[
Although both LC-based
3. Applications of LC devices in quantum regime
LC optical elements have played important roles in the field of quantum optics. Here, we mainly discuss their roles in the generation of various entanglement structures and their applications in the field of two-photon interference.
3.1. Generation of various entanglement structures
LC
Utilizing patterned LC
Combining entangled photon pairs generated through a spontaneous parametric down-conversion (PDC) process with VVBs generated via
Graffitti et al. demonstrated a novel scheme for efficient generation of a complex entanglement structure between three DOFs of light. Combining time-frequency mode (TFM) encoding through a PDC process and VVB encoding via a
Figure 6.Sketch of the biphoton hyperentangled state[
The multiplexing of vector beams by SLMs has attracted much attention lately[
Figure 7.Schematic representation of the investigated field with a z-dependent degree of entanglement[
LC devices also play an invaluable role in the research of quantum walks for simulations of quantum dynamics[
3.2. Applications in two-photon interference
The Hong–Ou–Mandel (HOM) effect is a two-photon interference effect and is widely regarded as the quintessential quantum interference phenomenon in optics. It manifests as the bunching/antibunching of two indistinguishable photons upon mixing at a mode splitter. It is fundamentally interesting, as it has no classical counterpart, and it is at the heart of many applications ranging from precision measurement to quantum computations and communication[
LC optical elements offer a convenient way to control the HOM effect. HOM interference of scalar OAM states has also been demonstrated by the use of a
Figure 8.Tunable two-photon quantum interference by using a q-plate[
Figure 9.Application of SLMs in high-dimensional two-photon interference[
4. Summary and Outlook
In this short review, we have discussed and compared various LC optical devices for the generation and manipulation of VVBs. The quantum applications of LCs are reviewed, and the functions of various LC devices are discussed in different scenarios.
In the future, with the advantage of their flexible tuning property, LCs will continually serve as important tools for quantum information tasks, notably in a controlled and programmable fashion. Apart from its promising applications in engineering complex entanglement structures and high-dimensional quantum states, wavelength-tunable single-photon sources could also be pursued[
Besides the applications of LC devices in the field of VVBs engineering, manipulations of other types of vector beams are worth exploring. For example, an LC
LC layers integrated into metasurfaces have attracted much attention and brought additional active functionalities[
Despite all the progress made so far, the potential of photon engineering based on LC elements is far from fully exploited. With the continuous innovation of LC technology, exciting new applications will surely follow.
References
[1] C.-C. Lee. The Current Trends of Optics and Photonics(2015).
[2] J. M. Otón, E. Otón, X. Quintana, M. A. Geday. Liquid-crystal phase-only devices. J. Mol. Liq., 267, 469(2018).
[3] A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci. Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B, 36, D70(2019).
[4] A. Márquez, Á. Lizana. Special issue on liquid crystal on silicon devices: modeling and advanced spatial light modulation applications. Appl. Sci., 9, 3049(2019).
[5] G. Lazarev, P.-J. Chen, J. Strauss, N. Fontaine, A. Forbes. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt. Express, 27, 16206(2019).
[6] P. Chen, B. Wei, W. Hu, Y. Lu. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2020).
[7] J. Chen, C. Wan, Q. Zhan. Vectorial optical fields: recent advances and future prospects. Sci. Bull., 63, 54(2018).
[8] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte. Tailoring of arbitrary optical vector beams. New J. Phys., 9, 78(2007).
[9] A. Forbes. Structured light from lasers. Laser Photon. Rev., 13, 1900140(2019).
[10] X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia. Recent advances on optical vortex generation. Nanophotonics, 7, 1533(2018).
[11] Z. Yang, O. S. Magaña-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G.-L. Long, R. W. Boyd. Digital spiral object identification using random light. Light Sci. Appl., 6, e17013(2017).
[12] X. Qiu, F. Li, W. Zhang, Z. Zhu, L. Chen. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208(2018).
[13] X. Qiu, D. Zhang, W. Zhang, L. Chen. Structured-pump-enabled quantum pattern recognition. Phys. Rev. Lett., 122, 123901(2019).
[14] R. Fickler, G. Campbell, B. Buchler, P. K. Lam, A. Zeilinger. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. USA, 113, 13642(2016).
[15] J. Wang. Twisted optical communications using orbital angular momentum. Sci. Chin. Phys. Mech. Astron., 62, 34201(2019).
[16] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).
[17] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photon., 10, 2986(2019).
[18] T. D. Huang, T. H. Lu. Controlling an optical vortex array from a vortex phase plate, mode converter, and spatial light modulator. Opt. Lett., 44, 3917(2019).
[19] A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, D. N. Neshev. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl. Phys. Lett., 110, 071109(2017).
[20] D. Wang, F. Liu, T. Liu, S. Sun, Q. He, L. Zhou. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl., 10, 67(2021).
[21] Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, X.-M. Jin. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).
[22] X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, D. Fan. Hybrid-order Poincaré sphere. Phys. Rev. A, 91, 023801(2015).
[23] G. Milione, S. Evans, D. A. Nolan, R. R. Alfano. Higher order Pancharatnam–Berry phase and the angular momentum of light. Phys. Rev. Lett., 108, 190401(2012).
[24] G. Milione, H. I. Sztul, D. A. Nolan, R. R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).
[25] B. Ndagano, R. Brüning, M. McLaren, M. Duparré, A. Forbes. Fiber propagation of vector modes. Opt. Express, 23, 17330(2015).
[26] W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, X. Yuan. Approach to multiplexing fiber communication with cylindrical vector beams. Opt. Lett., 42, 2579(2017).
[27] G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, A. E. Willner. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 40, 1980(2015).
[28] M. McLaren, T. Konrad, A. Forbes. Measuring the nonseparability of vector vortex beams. Phys. Rev. A, 92, 023833(2015).
[29] B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, A. Forbes. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol., 36, 292(2018).
[30] C. Rosales-Guzmán, B. Ndagano, A. Forbes. A review of complex vector light fields and their applications. J. Opt., 20, 123001(2018).
[31] P. Yue, D. Jianping, W. Huitian. Manipulation on novel vector optical fields: introduction, advances and applications. Acta Opt. Sin., 39, 0126001(2019).
[32] W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, Y.-Q. Lu. Meta-q-plate for complex beam shaping. Sci. Rep., 6, 25528(2016).
[33] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).
[34] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, F. Sciarrino. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001(2011).
[35] E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, E. Karimi. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys., 1, 437(2019).
[36] L. Marrucci, E. Nagali, F. Sciarrino, L. Sansoni, F. De Martini, B. Piccirillo, E. Karimi, E. Santamato. Photonic quantum information applications of patterned liquid crystals. Mol. Cryst. Liq. Cryst., 526, 108(2010).
[37] M. M. Sánchez-López, I. Abella, D. Puerto-García, J. A. Davis, I. Moreno. Spectral performance of a zero-order liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths. Opt. Laser Technol., 106, 168(2018).
[38] S. Delaney, M. M. Sánchez-López, I. Moreno, J. A. Davis. Arithmetic with q-plates. Appl. Opt., 56, 596(2017).
[39] S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, E. Santamato. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express, 19, 4085(2011).
[40] W. Ji, B.-Y. Wei, P. Chen, W. Hu, Y.-Q. Lu. Optical field control via liquid crystal photoalignment. Mol. Cryst. Liq. Cryst., 644, 3(2017).
[41] S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, Y. Lu. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express, 25, 12349(2017).
[42] B.-Y. Wei, S. Liu, P. Chen, S.-X. Qi, Y. Zhang, W. Hu, Y.-Q. Lu, J.-L. Zhao. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett., 112, 121101(2018).
[43] Z. Ji, X. Zhang, Y. Zhang, Z. Wang, I. Drevensek-Olenik, R. Rupp, W. Li, Q. Wu, J. Xu. Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures. Chin. Opt. Lett., 15, 070501(2017).
[44] P. Chen, W. Ji, B.-Y. Wei, W. Hu, V. Chigrinov, Y.-Q. Lu. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Appl. Phys. Lett., 107, 241102(2015).
[45] I. Gianani, A. Suprano, T. Giordani, N. Spagnolo, F. Sciarrino, D. Gorpas, V. Ntziachristos, K. Pinker, N. Biton, J. Kupferman, S. Arnon. Transmission of vector vortex beams in dispersive media. Adv. Photon., 2, 036003(2020).
[46] Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photon. Res., 5, 15(2017).
[47] D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon., 10, 327(2016).
[48] P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, Y.-Q. Lu. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding. ACS Photon., 4, 1333(2017).
[49] P. Chen, S. Ge, L. Ma, W. Hu, V. Chigrinov, Y. Lu. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals. Phys. Rev. Appl., 5, 044009(2016).
[50] Y.-H. Zhang, P. Chen, S.-J. Ge, T. Wei, J. Tang, W. Hu, Y.-Q. Lu. Spin-controlled massive channels of hybrid-order Poincaré sphere beams. Appl. Phys. Lett., 117, 081101(2020).
[51] Y. Liu, P. Chen, R. Yuan, C.-Q. Ma, Q. Guo, W. Duan, V. G. Chigrinov, W. Hu, Y.-Q. Lu. Ferroelectric liquid crystal mediated fast switchable orbital angular momentum of light. Opt. Express, 27, 36903(2019).
[52] M. Rafayelyan, G. Agez, E. Brasselet. Ultrabroadband gradient-pitch Bragg–Berry mirrors. Phys. Rev. A, 96, 043862(2017).
[53] J. Kobashi, H. Yoshida, M. Ozaki. Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys. Rev. Lett., 116, 253903(2016).
[54] J. Kobashi, H. Yoshida, M. Ozaki. Planar optics with patterned chiral liquid crystals. Nat. Photon., 10, 389(2016).
[55] M. Rafayelyan, G. Tkachenko, E. Brasselet. Reflective spin-orbit geometric phase from chiral anisotropic optical media. Phys. Rev. Lett., 116, 253902(2016).
[56] R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori. Berry phase of light under Bragg reflection by chiral liquid-crystal media. Phys. Rev. Lett., 117, 053903(2016).
[57] C. Yuan, W. Huang, X. Wang, D. Shen, Z. Zheng. Electrically tunable helicity of cholesteric heliconical superstructure [Invited]. Chin. Opt. Lett., 18, 080005(2020).
[58] P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, Y.-Q. Lu. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).
[59] C.-T. Xu, P. Chen, Y.-H. Zhang, X.-Y. Fan, Y.-Q. Lu, W. Hu. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Appl. Phys. Lett., 118, 151102(2021).
[60] P. Chen, L.-L. Ma, W. Hu, Z.-X. Shen, H. K. Bisoyi, S.-B. Wu, S.-J. Ge, Q. Li, Y.-Q. Lu. Chirality invertible superstructure mediated active planar optics. Nat. Commun., 10, 2518(2019).
[61] M. Rafayelyan, E. Brasselet. Bragg–Berry mirrors: reflective broadband q-plates. Opt. Lett., 41, 3972(2016).
[62] M. Rafayelyan, E. Brasselet. Spin-to-orbital angular momentum mapping of polychromatic light. Phys. Rev. Lett., 120, 213903(2018).
[63] T. Lin, Y. Yuan, Y. Zhou, W. Fu, H. Huang, L. Yao, F. Fan, S. Wen. Bragg reflective polychromatic vector beam generation from opposite-handed cholesteric liquid crystals. Opt. Lett., 44, 2720(2019).
[64] R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, E. Vidal-Henriquez. Optical vortex induction via light–matter interaction in liquid-crystal media. Adv. Opt. Photon., 7, 635(2015).
[65] E. Brasselet. Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett., 108, 087801(2012).
[66] P. Salamon, N. Éber, Y. Sasaki, H. Orihara, Á. Buka, F. Araoka. Tunable optical vortices generated by self-assembled defect structures in nematics. Phys. Rev. Appl., 10, 044008(2018).
[67] L. K. Migara, H. Lee, C.-M. Lee, K. Kwak, D. Lee, J.-K. Song. External pressure induced liquid crystal defects for optical vortex generation. AIP Adv., 8, 065219(2018).
[68] E. Brasselet, N. Murazawa, H. Misawa, S. Juodkazis. Optical vortices from liquid crystal droplets. Phys. Rev. Lett., 103, 103903(2009).
[69] E. Brasselet, C. Loussert. Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons. Opt. Lett., 36, 719(2011).
[70] B. Son, S. Kim, Y. H. Kim, K. Käläntär, H.-M. Kim, H.-S. Jeong, S. Q. Choi, J. Shin, H.-T. Jung, Y.-H. Lee. Optical vortex arrays from smectic liquid crystals. Opt. Express, 22, 4699(2014).
[71] N. Kravets, E. Brasselet. Taming the swirl of self-structured liquid crystal q-plates. J. Opt., 22, 34001(2020).
[72] E. Brasselet. Tunable high-resolution macroscopic self-engineered geometric phase optical elements. Phys. Rev. Lett., 121, 033901(2018).
[73] N. Kravets, E. Brasselet. Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements. Phys. Rev. A, 97, 013834(2018).
[74] D. Lee, H. Lee, L. K. Migara, K. Kwak, V. P. Panov, J. Song. Widely tunable optical vortex array generator based on grid patterned liquid crystal cell. Adv. Opt. Mater., 9, 2001604(2021).
[75] Y. Sasaki, V. S. R. Jampani, C. Tanaka, N. Sakurai, S. Sakane, K. V. Le, F. Araoka, H. Orihara. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun., 7, 13238(2016).
[76] R. Amano, P. Salamon, S. Yokokawa, F. Kobayashi, Y. Sasaki, S. Fujii, Á. Buka, F. Araoka, H. Orihara. Tunable two-dimensional polarization grating using a self-organized micropixelated liquid crystal structure. RSC Adv., 8, 41472(2018).
[77] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon., 8, 200(2016).
[78] X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, H.-T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549(2007).
[79] P. García-Martínez, D. Marco, J. L. Martínez-Fuentes, M. del Mar Sánchez-López, I. Moreno. Efficient on-axis SLM engineering of optical vector modes. Opt. Lasers Eng., 125, 105859(2020).
[80] S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res., 6, 228(2018).
[81] Y. Gao, Z. Chen, J. Ding, H.-T. Wang. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams. Appl. Opt., 58, 6591(2019).
[82] C. Rosales-Guzmán, N. Bhebhe, A. Forbes. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express, 25, 25697(2017).
[83] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205(2016).
[84] I. Moreno, M. M. Sanchez-Lopez, K. Badham, J. A. Davis, D. M. Cottrell. Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator. Opt. Lett., 41, 1305(2016).
[85] A. Lohrmann, C. Perumgatt, A. Ling. Manipulation and measurement of quantum states with liquid crystal devices. Opt. Express, 27, 13765(2019).
[86] E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, E. Santamato. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 103, 013601(2009).
[87] A. Forbes, A. Aiello, B. Ndagano. Classically entangled light. Prog. Opt., 64, 99(2019).
[88] N. Korolkova, G. Leuchs. Quantum correlations in separable multi-mode states and in classically entangled light. Reports Prog. Phys., 82, 056001(2019).
[89] J. H. Eberly, X. Qian, A. Al Qasimi, H. Ali, M. A. Alonso, R. Gutiérrez-Cuevas, B. J. Little, J. C. Howell, T. Malhotra, A. N. Vamivakas. Quantum and classical optics–emerging links. Phys. Scr., 91, 063003(2016).
[90] E. Karimi, R. W. Boyd. Classical entanglement?. Science, 350, 1172(2015).
[91] T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, M. Segev. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101(2018).
[92] Y. Shen, I. Nape, X. Yang, X. Fu, M. Gong, D. Naidoo, A. Forbes. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci. Appl., 10, 50(2021).
[93] B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzman, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, A. Forbes. Characterizing quantum channels with non-separable states of classical light. Nat. Phys., 13, 397(2017).
[94] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, J. Laurat. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).
[95] X. Li, X. Liu, Z.-Q. Zhou, C.-F. Li, G.-C. Guo. Solid-state quantum memory for hybrid entanglement involving three degrees of freedom. Phys. Rev. A, 101, 052330(2020).
[96] V. D’Ambrosio, G. Carvacho, F. Graffitti, C. Vitelli, B. Piccirillo, L. Marrucci, F. Sciarrino. Entangled vector vortex beams. Phys. Rev. A, 94, 030304(2016).
[97] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, E. Karimi. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006(2017).
[98] F. Graffitti, V. D’Ambrosio, M. Proietti, J. Ho, B. Piccirillo, C. de Lisio, L. Marrucci, A. Fedrizzi. Hyperentanglement in structured quantum light. Phys. Rev. Res., 2, 043350(2020).
[99] C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, A. Forbes. Multiplexing 200 spatial modes with a single hologram. J. Opt., 19, 113501(2017).
[100] E. Otte, K. Tekce, C. Denz. Spatial multiplexing for tailored fully-structured light. J. Opt., 20, 105606(2018).
[101] A. Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben Salem, M. Zghal, A. Forbes. Optical communication beyond orbital angular momentum. Sci. Rep., 6, 27674(2016).
[102] E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, A. Forbes. Entanglement beating in free space through spin-orbit coupling. Light Sci. Appl., 7, 18009(2018).
[103] F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci. Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun., 7, 11439(2016).
[104] A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, L. Marrucci. Two-dimensional topological quantum walks in the momentum space of structured light. Optica, 7, 108(2020).
[105] D. Cozzolino, B. Da Lio, D. Bacco, L. K. Oxenløwe. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol., 2, 1900038(2019).
[106] A. Gratsea, F. Metz, T. Busch. Universal and optimal coin sequences for high entanglement generation in 1D discrete time quantum walks. J. Phys. A, 53, 445306(2020).
[107] T. Giordani, E. Polino, S. Emiliani, A. Suprano, L. Innocenti, H. Majury, L. Marrucci, M. Paternostro, A. Ferraro, N. Spagnolo, F. Sciarrino. Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett., 122, 020503(2019).
[108] T. Giordani, L. Innocenti, A. Suprano, E. Polino, M. Paternostro, N. Spagnolo, F. Sciarrino, A. Ferraro. Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit–qudit dynamics. New J. Phys., 23, 023012(2021).
[109] T. Giordani, A. Suprano, E. Polino, F. Acanfora, L. Innocenti, A. Ferraro, M. Paternostro, N. Spagnolo, F. Sciarrino. Machine learning-based classification of vector vortex beams. Phys. Rev. Lett., 124, 160401(2020).
[110] F. Bouchard, A. Sit, Y. Zhang, R. Fickler, F. M. Miatto, Y. Yao, F. Sciarrino, E. Karimi. Two-photon interference: the Hong–Ou–Mandel effect. Rep. Prog. Phys., 84, 012402(2021).
[111] E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, E. Santamato. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photon., 3, 720(2009).
[112] V. D’Ambrosio, G. Carvacho, I. Agresti, L. Marrucci, F. Sciarrino. Tunable two-photon quantum interference of structured light. Phys. Rev. Lett., 122, 013601(2019).
[113] M. Hiekkamäki, R. Fickler. High-dimensional two-photon interference effects in spatial modes. Phys. Rev. Lett., 126, 123601(2021).
[114] S. G. Lukishova, A. C. Liapis, L. J. Bissell, G. M. Gehring, R. W. Boyd. Single-photon experiments with liquid crystals for quantum science and quantum engineering applications. Liq. Cryst. Rev., 2, 111(2014).
[115] S. G. Lukishova, A. C. Liapis, H. Zhu, E. Hebert, K. Kuyk, S. Choudhary, R. W. Boyd, Z. Wang, L. J. Bissell. Plasmonic nanoantennas with liquid crystals for nanocrystal fluorescence enhancement and polarization selectivity of classical and quantum light sources. Mol. Cryst. Liq. Cryst., 657, 173(2017).
[116] W. Fu, Y. Zhou, Y. Yuan, T. Lin, Y. Zhou, T. Zeng, H. Huang, F. Fan, S. Wen. Symmetric Airy vortex and symmetric Airy vector beams. Liq. Cryst., 48, 484(2021).
[117] T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, G. Leuchs. Observation of optical polarization Möbius strips. Science, 347, 964(2015).
[118] Y. Intaravanne, X. Chen. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics, 9, 1003(2020).
[119] Y. Hu, X. Ou, T. Zeng, J. Lai, J. Zhang, X. Li, X. Luo, L. Li, F. Fan, H. Duan. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett., 21, 4554(2021).
[120] T. Wei, P. Chen, M. Tang, G. Wu, Z. Chen, Z. Shen, S. Ge, F. Xu, W. Hu, Y. Lu. Liquid-crystal-mediated active waveguides toward programmable integrated optics. Adv. Opt. Mater., 8, 1902033(2020).
[121] Y. Liu, W. Chen, J. Tang, X. Xu, P. Chen, C.-Q. Ma, W. Zhang, B.-Y. Wei, Y. Ming, G.-X. Cui, Y. Zhang, W. Hu, Y.-Q. Lu. Switchable second-harmonic generation of Airy beam and Airy vortex beam. Adv. Opt. Mater., 9, 2001776(2021).

Set citation alerts for the article
Please enter your email address