
- Chinese Optics Letters
- Vol. 21, Issue 5, 051603 (2023)
Abstract
Keywords
1. Introduction
Upconversion (UC) luminescent materials have been extensively used in display imaging, sensing detection, photothermal therapy, and photovoltaics because of their peculiar optical process[1–7]. Metal ions with the d, f orbitals can fulfill the requirement for the UC by virtue of their long-lived excited states and ladder-level configurations[8]. In addition, a large number of transition metals and actinide-doped materials have been reported to display UC properties[9]. Among them, lanthanide-doped UC solid materials show superior upconversion luminescence (UCL) characteristics, and fluoride and sulfide UC materials with low phonon energies are the ideal host matrix[10,11]. However, the matrix is being replaced by oxide materials due to its poor stability and high toxicity. In oxide UC materials, the inherent structural defects, low absorption cross section, and dipole transitions of the rare-earth ions usually result in a low UC efficiency. Up to the present, several strategies have been developed to optimize the materials design and to improve the efficiency of oxide UC materials.
In order to reduce the quenching effect of surface defects or surface-related ligands, a core-shell structure is one of the solutions. For example, Vetrone et al. reported the use of “active” doped shells to increase surface passivation to reduce nonradiative transition rates and to enhance UCL[12]. Liu et al. also achieved a significant enhancement of the UCL by adding a microlens array to the top of the UC nanomaterial to modulate the temporal distribution of transmitted excitation photons[13,14]. However, the UC process is still relatively inefficient due to the inherently low absorption coefficients of rare-earth (RE) ions. This problem can be mitigated by using dye sensitization for RE ions, and the combination of dye sensitization with a core-shell structure could lead to higher efficiency. For instance, Shao and coworkers introduced the organic dye indocyanine green (ICG) onto the surface of core-shell structured
In the above UCL enhancement mechanisms, local field modulation and surface optimization are always the most efficient strategies. Due to the influence of many restrictive conditions on the photovoltaic conversion, we here chose surface engineering strategy by using non-RE ions doping to adjust the atomic structure of the UCNPs’ surface and to control structure transition from amorphous to ordered crystal to increase the absorption efficiency and enhance the luminescence efficiency. Due to the low phonon energy, excellent thermal stability, high physical durability, and the close cation ionic radius,
2. Experiment Section
3. Results and Discussion
3.1. Structural and morphological characteristics
In order to observe the morphology of changes of its morphology and structure after the introduction of alkali metals, the
Figure 1.SEM images of the synthesized samples: (a) Gd2O3: 3% Er3+; (b) Gd2O3: 3% Er3+, 10% Na+; (c) Gd2O3: 3% Er3+, 7% K+; (d) Gd2O3: 3% Er3+, 3% Cs+. (e), (h) TEM images; (f), (i) HRTEM images; (g), (j) SAED patterns of Gd2O3: 3% Er3+ and Gd2O3: 3% Er3+, 10% Na+ phosphors.
3.2. Optical performance
The absorption spectra and the emission spectra of the samples prepared under different conditions were studied. Figure 2(a) presents the absorption spectra for
Figure 2.(a) Absorption spectra of Gd2O3: 3% Er3+ and Gd2O3: 3% Er3+, yM+ (M = Na, K, Cs; y = 10%, 7%, 3%). UC PL emission spectra for (b) Gd2O3: xEr3+ (x = 1%, 3%, 5%, 7%, 10%, 12%); (c) Gd2O3: 3% Er3+, yNa+ (y = 1%, 3%, 5%, 7%, 10%, 12%); and (d) Gd2O3: 3% Er3+, zM+ (M = Na, K, Cs; z = 10%, 7%, 3%). (e) Luminescence intensity of the Gd2O3: 3% Er3+, 10% Na+ phosphors at different annealing temperatures; (f) CIE chromaticity diagram of the Gd2O3: 3% Er3+ and the Gd2O3: 3% Er3+, 10% Na+ phosphors.
Here, we also recorded the luminescence intensity of
The UCL mechanism of
Figure 3.(a), (b) Logarithmic patterns of power dependence of 3% Er3+ and 3% Er3+, 10% Na+-doped Gd2O3 sample materials in red and green wavebands; (c) emission attenuation curves of Gd2O3: 3% Er3+ and Gd2O3: 3% Er3+, 10% Na+ phosphors were fitted by a double exponential decay function (980 nm excitation); (d) possible UC mechanism of Er3+ ions under 980 nm excitation.
The UC phosphor particles were then integrated with a Si photoresistor for the demonstration of NIR photoresponse. In this device (see Section 2), the photocurrent response to the NIR light is related to the UC emission of the phosphor particles. In this work, the photocurrent responses of devices based on the
Figure 4.Photocurrent response of the device incorporating Gd2O3: 3% Er3+/PMMA and Gd2O3: 3% Er3+, 10% Na+/PMMA composite films under the square pulse with an NIR wavelength of 980 nm, the applied potential of 0 V, and 2 s off/on cycles.
4. Conclusions
In summary, the crystal structure and surface properties of
References
[1] T. Han, Y. Wang, S. Ma, M. Li, N. Zhu, S. Tao, J. Xu, B. Sun, Y. Jia, Y. Zhang, S. Zhu, B. Yang. Near-infrared carbonized polymer dots for NIR-II bioimaging. Adv. Sci., 9, 2203474(2022).
[2] M. Yang, J. Huang, J. Fan, J. Du, K. Pu, X. Peng. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem. Soc. Rev., 49, 6800(2020).
[3] H. Huang, S. Wang, R. Chen, N. Zhang, H.-R. Yao, Y. Zheng, F. Huang, D. Chen. Engineering upconverting core-shell nano-probe for spectral responsive fluid velocimetry. Nano Res., 16, 1212(2022).
[4] M.-P. Zhuo, X.-D. Wang, L.-S. Liao. Recent progress of novel organic near-infrared-emitting materials. Small Sci., 2, 2200029(2022).
[5] H. Altug, S. H. Oh, S. A. Maier, J. Homola. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol., 17, 5(2022).
[6] J. Li, L. Liu, X. Chen, C. Lu, H. Zhang, B. Li, C. Xue, Z. Lou. Dual-functional nonmetallic plasmonic hybrids with three-order enhanced upconversion emission and photothermal bio-therapy. Laser Photonics Rev., 16, 2200197(2022).
[7] F. Zhang, S. Y. Park, C. Yao, H. Lu, S. P. Dunfield, C. Xiao, S. Uličná, X. Zhao, L. D. Hill, X. Chen, X. Wang, L. E. Mundt, K. H. Stone, L. T. Schelhas, G. Teeter, S. Parkin, E. L. Ratcliff, Y.-L. Loo, J. J. Berry, M. C. Beard, Y. Yan, B. W. Larson, K. Zhu. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 375, 71(2022).
[8] L. Yang, J. Luo, L. Gao, B. Song, J. Tang. Inorganic lanthanide compounds with f-d transition: from materials to electroluminescence devices. J. Phys. Chem. Lett., 13, 4365(2022).
[9] X. Feng, L. Lin, R. Duan, J. Qiu, S. Zhou. Transition metal ion activated near-infrared luminescent materials. Prog. Mater. Sci., 129, 100973(2022).
[10] A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett., 86, 013505(2005).
[11] W. Chen, A. G. Joly, J. Z. Zhang. Up-conversion luminescence of Mn2+ in ZnS:Mn2+ nanoparticles. Phys. Rev. B, 64, 041202(2001).
[12] F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, J. A. Capobianco. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater., 19, 2924(2009).
[13] Q. Liu, H. Liu, D. Li, W. Qiao, G. Chen, H. Ågren. Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale, 11, 14070(2019).
[14] Y. Ji, W. Xu, N. Ding, H. Yang, H. Song, Q. Liu, H. Agren, J. Widengren, H. Liu. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection. Light Sci. Appl., 9, 2047(2020).
[15] W. Shao, G. Chen, A. N. Kuzmin, H. L. Kutscher, A. Pliss, T. Y. Ohulchanskyy, P. N. Prasad. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc., 138, 16192(2016).
[16] H. Dong, L. D. Sun, C. H. Yan. Basic understanding of the lanthanide related upconversion emissions. Nanoscale, 5, 5703(2013).
[17] C. Mao, K. Min, K. Bae, S. Cho, T. Xu, H. Jeon, W. Park. Enhanced upconversion luminescence by two-dimensional photonic crystal structure. ACS Photonics, 6, 1882(2019).
[18] J. Xu, Z. Dong, M. Asbahi, Y. Wu, H. Wang, L. Liang, R. J. H. Ng, H. Liu, R. A. L. Vallee, J. K. W. Yang, X. Liu. Multiphoton upconversion enhanced by deep subwavelength near-field confinement. Nano Lett., 21, 3044(2021).
[19] A. Das, C. Mao, S. Cho, K. Kim, W. Park. Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures. Nat. Commun., 9, 4828(2018).
[20] J. Li, W. Zhang, C. Lu, Z. Lou, B. Li. Nonmetallic plasmon induced 500-fold enhancement in the upconversion emission of the UCNPs/WO3−x hybrid. Nanoscale Horiz., 4, 999(2019).
[21] L. Jiang, X. Luo, Z. Luo, D. Zhou, B. Liu, J. Huang, J. Zhang, X. Zhang, P. Xu, G. Li. Interface and bulk controlled perovskite nanocrystal growth for high brightness light-emitting diodes. Chin. Opt. Lett., 19, 030001(2021).
[22] Z. Zhang, W. Li, N. Ma, X. Huang. High-brightness red-emitting double-perovskite phosphor Sr2LaTaO6: Eu3+ with high color purity and thermal stability. Chin. Opt. Lett., 19, 030003(2021).
[23] D. Zhou, D. Liu, W. Xu, Z. Yin, X. Chen, P. Zhou, S. Cui, Z. Chen, H. Song. Observation of considerable upconversion enhancement induced by Cu2−xS plasmon nanoparticles. ACS Nano, 10, 5169(2016).
[24] W. Zheng, B. Sun, Y. Li, T. Lei, R. Wang, J. Wu. Warm white broadband emission and tunable long lifetimes in Yb3+ doped Gd2O3 nanoparticles. Ceram. Int., 46, 22900(2020).
[25] W. Zheng, B. Sun, Y. Li, R. Wang, T. Lei, Y. Xu. Near-infrared laser-triggered full-color tuning photon upconversion and intense white emission in single Gd2O3 microparticle. ACS Sustain. Chem. Eng., 8, 2557(2020).
[26] W. Zheng, B. Sun, Y. Li, T. Lei, R. Wang, J. Wu. Low power high purity red upconversion emission and multiple temperature sensing behaviors in Yb3+, Er3+ codoped Gd2O3 porous nanorods. ACS Sustain. Chem. Eng., 8, 9578(2020).
[27] R. Priya, O. P. Pandey, S. J. Dhoble. Review on the synthesis, structural and photo-physical properties of Gd2O3 phosphors for various luminescent applications. Opt. Laser Technol., 135, 106663(2021).
[28] N. Wei, X. Li, J. He, Y. Fan, Y. Dan, J. Wang. Design of an optical slot waveguide amplifier based on Er3+-doped tellurite glass. Chin. Opt. Lett., 21, 011404(2023).
[29] I. Kaminska, A. Wosztyl, P. Kowalik, B. Sikora, T. Wojciechowski, K. Sobczak, R. Minikayev, K. Zajdel, M. Chojnacki, W. Zaleszczyk, K. Lysiak, W. Paszkowicz, J. Szczytko, M. Frontczak-Baniewicz, W. Stryczniewicz, K. Fronc. Synthesis and characterization of Gd2O3:Er3+, Yb3+ doped with Mg2+, Li+ ions-effect on the photoluminescence and biological applications. Nanotechnology, 32, 245705(2021).
[30] H. Liu, X. He, H. Jia, Y. Zheng, R. Bai, Y. Zhang. Investigation on the efficient up-conversion luminescence and temperature sensing properties of the Li+/Er3+/Yb3+:Gd2O3 phosphor. Optik, 228, 166155(2021).
[31] A. Meza-Rocha, E. Huerta, E. Zaleta-Alejandre, Z. Rivera-Álvarez, C. Falcony. Enhanced photoluminescence of Y2O3:Er3+ thin films by Li+ co-doping. J. Lumin., 141, 173(2013).
[32] G. Chen, H. Liu, H. Liang, G. Somesfalean, Z. Zhang. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C, 112, 12030(2008).
[33] G. Bi, L. Wang, W. Xiong, K. Ueno, H. Misawa, J. Qiu. Photoluminescence enhancement induced from silver nanoparticles in Tb3+-doped glass ceramics. Chin. Opt. Lett., 10, 092401(2012).
[34] B. Qian, H. Zou, D. Meng, X. Zhou, Y. Song, K. Zheng, C. Miao, Y. Sheng. Columnar Gd2O3:Eu3+/Tb3+ phosphors: preparation, luminescence properties and growth mechanism. CrystEngComm, 20, 7322(2018).
[35] K. Saidi, M. Dammak, K. Soler-Carracedo, I. R. Martin. A novel optical thermometry strategy based on emission of Tm3+/Yb3+ codoped Na3GdV2O8 phosphors. Dalton Trans., 51, 5108(2022).
[36] J. Xing, F. Shang, G. Chen. Upconversion luminescence of Yb3+/Er3+ co-doped NaSrPO4 glass ceramic for optical thermometry. Ceram. Int., 47, 8330(2021).
[37] H. Jia, H. Jiang, Z. Chen, Z. Feng, X. Zhang, Y. Zhang, X. Xu, X. Li, F. Peng, X. Liu, J. Qiu. Near-infrared light-induced photoresponse in Er3+/Li+-codoped Y2O3/poly(methyl methacrylate) composite film. J. Phys. Chem. Lett., 13, 3470(2022).
[38] P. Miluski, M. Kochanowicz, J. Zmojda, D. Dorosz. Luminescent properties of Tb3+-doped poly(methyl methacrylate) fiber. Chin. Opt. Lett., 15, 070602(2017).

Set citation alerts for the article
Please enter your email address