
- Chinese Optics Letters
- Vol. 19, Issue 9, 091403 (2021)
Abstract
1. Introduction
All-solid-state passively mode-locked lasers have received wide attention due to their broad applications in industrial processing, spectroscopy, and medicine[
Recently, polycrystalline ceramics as laser gain media have several advantages over conventional single crystals, since they have a prolonged fluorescence lifetime and a broadened fluorescence spectrum[
Compared with the SA, the advantage of mode-locking based on intracavity frequency doubling is that it has higher damage threshold and output power. The periodically poled
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Theoretical Analysis
The NLM contains a PPLN superlattice as a nonlinear crystal and an output coupler (OC), which has partial reflectivity for the fundamental wave (FW) and high reflectivity for the second harmonic (SH), as shown in Fig. 1(a). The extended nonlinear Schrodinger equation (NLSE) including the effects of dispersion and Kerr nonlinearity is used to analyze to performance of the NLM. In the slowly varying envelope approximation and in absence of diffraction, the NLSE of the FW and SH can be described as follows[
Figure 1.(a) Diagram of nonlinear mirror. (b) Nonlinear reflectivity dependence on intracavity peak intensity.
Here,
14 | 8.8% | 0.091 | 0.3% |
5 | 8.7% | 0.113 | 0.4% |
1 | 7.6% | 1.800 | 1.5% |
Table 1. Modulation Depth, Saturable Intensity, and Nonsaturable Loss Dependence on Effective Nonlinear Coefficient
3. Material and Methods
The mode-locking performance of the Nd:YSAG laser was investigated by using a standard Z-type cavity in the experiment. Figure 2 shows the diagram of the experimental setup of the mode-locked laser. The length, width, and height of the Nd:YSAG crystal was
Figure 2.Diagram of mode-locked Nd:YSAG laser (M1, flat mirror; M2, M3, plane-concave mirror; M4, output coupler; B, Brewster polarization plate; dotted rectangle is nonlinear mirror).
4. Experimental Results and Discussion
First, the PPLN was not inserted into the cavity, and the characteristics of the CW laser were studied. The pump power threshold was 1.5 W, and the output power increased linearly as the pump power increased. As shown in Fig. 3, the output average power reaches 930 mW when the pump power increases to 6.5 W. The corresponding slope efficiency is 18.3%.
Figure 3.Average output power dependence on pump power in the CW and CWML regime.
Then, the PPLN was inserted into the resonant cavity to study the performance of the CWML. The FW would be converted into SH by frequency doubling when it propagated through the PPLN. In order to improve the SH conversion efficiency, the temperature of the PPLN crystal was adjusted to achieve a phase-matching point. The optimized temperature for frequency doubling was controlled at about 20°C. As shown in Fig. 3, CW mode locking occurs when the pump power increased to 5 W. The cavity delivered 710 mW average output power with a slope efficiency of 14.6 % under the pump power of 6.5 W.
The pulse sequence was detected by a Si detector (Thorlabs, DET025AFC). The interval between adjacent pulses was 9.8 ns, which was in good agreement with the calculated roundtrip time by using a cavity length of 1.45 m, as shown in Fig. 4(a). Figure 4(b) shows the pulse sequence trace at 500 µs time scale. A digital oscilloscope (LeCroy, HDO4104A), which had a spectrum analyzing function, was used to measure radio frequency (RF) waveform, as shown in Fig. 5. The resolution bandwidth (RBW) was set to be 2 kHz within a span of 3.5 MHz. The fundamental central frequency was 101.7 MHz. The signal-to-noise ratio of the pulse was 45 dB. An optical spectrum analyzer (Avantes, AVASPEC-3648-USB2) was used to measure the optical spectrum. As shown in Fig. 6, there are two peaks oscillating in the cavity, 1061 nm and 1063.5 nm, respectively. To determine which wavelength participates in the mode-locking process, we made the analysis as follows:
Figure 4.(a) Mode-locked pulse sequence at 100 ns time scale. (b) Mode-locked pulse sequence at 500 µs time scale.
Figure 5.Radio frequency waveform of CWML laser.
Figure 6.Optical spectrum of mode-locked Nd:YSAG laser.
Figure 7.Second harmonic efficiency at different wavelengths.
The mode-locked pulse width can be estimated according to the following method. The full width at half-maximum (FWHM) of the spectrum is 1.6 nm at the central wavelength of 1061 nm. According to the time bandwidth product of a pulse with a Gaussian curve (
It is worth noting that the minimum pulse intensity of the intracavity pulse is
5. Conclusions
In conclusion, we report a passively mode-locked Nd:YSAG laser based on a PPLN superlattice NLM. NLM mode locking was theoretically analyzed. The modulation depth of nonlinear reflectivity of the NLM was approximately 8.8%. Optical performances of the mode-locked laser including output power, RF spectrum, and optical spectrum were experimentally investigated. An average output power of 710 mW with a slope efficiency of 14.6% was obtained at the pump power of 6.5 W. The repetition rate was 101.7 MHz, and the signal-to-noise ratio of the mode-locked pulse was 45 dB. The mode-locked pulse width was approximately 9 ps.
References
[1] I. V. Pechenezhskiy, X. P. Hong, G. D. Nguyen, J. E. P. Dahl, R. M. K. Carlson, F. Wang, M. F. Crommie. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au (111). Phys. Rev. Lett., 111, 126101(2013).
[2] J. Baxter. Optical coherence tomography: tunable for medicine. Nat. Photon., 6, 70(2012).
[3] C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Sudmeyer, U. Keller. SESAMs for high-power oscillators: design guidelines and damage thresholds. IEEE J. Sel. Top. Quantum Electron., 18, 29(2012).
[4] M. F. Zhao, Z. M. Zhang, X. Y. Feng, M. Y. Zong, J. Liu, X. D. Xu, H. Zhang. High repetition rate passively Q-switched laser on Nd:SRA at 1049 nm with MXene Ti3C2Tx. Chin. Opt. Lett., 18, 041401(2020).
[5] Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, X. Y. Ma. 2-ps passively mode-locked Nd: YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror. Appl. Phys. Lett., 86, 101103(2005).
[6] J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, F. Rotermund. Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 µm. Appl. Phys. Lett., 93, 161106(2008).
[7] L. Zhang, Y. G. Wang, H. J. Yu, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li. High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber. Laser Phys., 21, 2072(2011).
[8] X. Sun, B. T. Zhang, Y. Li, X. Luo, G. Li, Y. Chen, C. Zhang, J. L. He. Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der Waals heterostructures and their application in solid-state bulk lasers. ACS Nano, 12, 11376(2018).
[9] H. Iliev, I. Buchvarov, S. Kurimura, V. Petrov. High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite. Opt. Lett., 35, 1016(2010).
[10] Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, S. N. Zhu. Diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with periodically poled LiNbO3. Opt. Lett., 36, 698(2011).
[11] L. N. Zhao, L. Y. Tong, F. X. Cai, Y. Yuan, Y. J. Cai. Wavelength-tunable nonlinear mirror mode-locked laser based on MgO-doped lithium niobite. Crystals, 10, 861(2020).
[12] H. Cheng, X. D. Jiang, X. P. Hu, M. L. Zhong, X. J. Lv, S. N. Zhu. Diode-pumped 1988-nm Tm:YAP laser mode-locked by intracavity second-harmonic generation in periodically poled LiNbO3. Opt. Lett., 39, 2187(2014).
[13] S. T. Lin, C. H. Huang. Effects of nonlinear phase in cascaded mode locked Nd:YVO4 laser. Opt. Express, 27, 504(2019).
[14] Q. Song, G. J. Wang, B. Y. Zhang, Q. L. Zhong, W. J. Wang, M. H. Wang, G. H. Sun, Y. Bo, Q. J. Peng. Passively Q-switched mode-locked dual-wavelength Nd:GYSGG laser using graphene oxide saturable absorber. Opt. Commun., 347, 64(2015).
[15] C. Feng, H. N. Zhang, Q. P. Wang, J. X. Fan. Dual-wavelength synchronously mode-locked laser of a Nd:Y3ScAl4O12 disordered crystal. Laser Phys. Lett., 14, 045804(2017).
[16] C. C. Gao, S. H. Lv, G. Zhu, G. J. Wang, X. C. Su, B. B. Wang, S. Kumar, R. Q. Dou, F. Peng, Q. L. Zhang, H. J. Yu, X. C. Lin, B. Y. Zhang. Self-Q-switching and passively Q-switched mode-locking of dual-wavelength Nd:YSAG laser. Opt. Laser Technol., 122, 105860(2020).
[17] Y. Sato, J. Saikawa, T. Taira. Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser. Opt. Mater., 29, 1277(2007).
[18] N. Zhang, S. K. Zeng, Z. X. Wang, B. X. Li, Y. H. Pan. Nd:YSAG Q-switched laser with anisotropic ReS2 nanosheets. Optik, 208, 164542(2020).
[19] J. L. Wang, K. Q. Zhao, T. Feng, X. L. Zhu, W. B. Chen. 1.5 J high-beam-quality Nd:LuAG ceramic active mirror laser amplifier. Chin. Opt. Lett., 18, 021401(2020).
[20] S. J. Holmgren, V. Pasiskevicius, F. Laurell. Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP. Opt. Express, 13, 5270(2005).
[21] F. X. Cai, L. Y. Tong, Y. Yuan, Y. G. Cai, L. N. Zhao. Diode-pumped passively mode-locked Nd:GYSGG laser at 1061 nm with periodically poled LiNbO3 nonlinear mirror. J. Mod. Opt., 67, 552(2020).
[22] F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, U. Keller. Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique. Opt. Express, 25, 23254(2017).

Set citation alerts for the article
Please enter your email address