
- Chinese Optics Letters
- Vol. 20, Issue 4, 043201 (2022)
Abstract
1. Introduction
The research of terahertz (THz) technologies provides fascinating paths for imaging[
Based on inverse spin Hall effect (ISHE)[
In this work, we design a unique structure for encapsulating STEs composed of a W/CoFeB/Pt trilayer heterostructure to enhance the pump power efficiency and downsize the external equipment. Thus, spintronic emitters can be expected to be used for PCAs to become new portable THz sources, which provide more possible optical paths for THz research, such as radar and angular deflection. In our THz-TDS system, the cumbersome mechanical chopper and its controller are replaced by an electromagnet composed of two electromagnetic coils and a function generator circuit module, which are with low cost, compact, compatible, and highly efficient. Furthermore, the generated THz signal is doubled, and the laser energy efficiency is improved simultaneously. Besides, this design can potentially serve as a more efficient THz polarization controller via integrating two orthogonal electromagnetic fields. Using the generator circuit module, not only can the sinusoidal THz polarization be created easily, but also the specific polar angle can be set by switching the alternative current to the direct current (DC). The new electrically driven module can also be expanded to other types of STEs.
2. Results and Discussion
A sketch of the device structure used for THz emission is shown in Fig. 1. In our design, the STEs fixed in an alternating electromagnetic field generate THz pulses upon the spatial photoexcitation of an 800 nm femtosecond laser. We electro-optically sample the generated THz pulses emitted by the charge current
Figure 1.Schematic of spintronic film THz emission with alternating electromagnetic coils.
Figure 2(a) shows the main circuit diagram of a power supply system to generate an alternating electromagnetic field. As shown in Fig. 2(a) and Fig. S2(e) in Supplementary Materials, the power system is mainly composed of a function generator, a power amplifier, and a voltage source. In the power supply system, the function generator is connected to the circuit to supply a small pulse signal with adjustable frequency and amplitude. Then, the small signal is amplified 44 times by a power amplifier, which is connected to the voltage source. As a result, an amplified pulse signal supplies the two electromagnetic coils, and an alternating magnetic field is induced. The hand-made coils are used in the system and are supervised by an oscilloscope, as shown in Fig. 2(a). The preparation and theoretical calculation of the electromagnetic coils are given in Supplementary Materials. To verify the reliability of the generated magnetic field, a comparison with the theoretical value is exhibited in Fig. 2(b), where the abscissa is current, corresponding to the amplitude from the oscilloscope. It is easy to see that the value of the generated magnetic field is comparable to the theoretical calculation, as well as increasing linearly with the current flowing in the coils.
Figure 2.(a) Power supply circuit for the electromagnetic coils to produce the alternating magnetic field. (b) Magnetic field versus current and corresponding theoretical calculation for electromagnetic coils.
In Fig. 3(a), with the wave signal from the function generator reversing, the signal in the coils reverses at the same time when supervised by the oscilloscope. In fact, a small delay (
Figure 3.(a) Square waveforms detected from the function generator and the oscilloscope. (b) Simplified waveforms for laser modulation by a chopper and electromagnetic field modulation by a function generator. (c) THz signal waveforms from the W/CoFeB/Pt spintronic film measured by a THz emission system, where two reverse directions of the direct current (DC) and alternating current (AC) flow in coils with chopper (w/ chopper) and without chopper (w/o chopper), respectively. (d) THz signal waveforms from the W/CoFeB/Pt spintronic emitter with the original start level (orange line) and a π phase difference start level (gray dash line).
Moreover, the STEs integrated with two electromagnetic coils are flexible for adjusting the phase of the generated THz signal. As shown in Fig. 3(c), the THz signal (the gray dash line) phase becomes opposite when an opposite DC is applied on the electromagnet. It meets the expectation that upon reversing the direction of the magnetic field, the generated THz signal experiences a sign reversal. Figure 3(d) shows the generated THz signal when the alternating voltage starts at a different level (1 or
Lastly, THz signals are surveyed in the W/CoFeB/Pt sample with different frequencies of alternating voltage applied on the electromagnet [Fig. 4(a)]. It is worth mentioning that the peak value of the THz wave is relatively stable below 1 kHz. In addition, we measured the THz field with a 2 mm thick ZnTe crystal in a
Figure 4.(a) THz signal waveforms and (b) the peak value of the THz signal under different frequencies from 84 Hz to 6884 Hz. (c) THz signal waveforms and (d) the peak value of the THz signal under different square wave amplitudes from 2 mV to 300 mV.
There is an obvious inflection point around 1884 Hz and a sharp fall after it [see fitting curve in Fig. 4(b)]. Besides, a 67% drop from 984 Hz to 6884 Hz is observed in Fig. 4(b). This illustrates the negative effects of the electromagnet on the THz signal when the frequency applied on the electromagnet exceeds the repetition rate of the laser pulses. The alternating magnetic fields with different intensities are further investigated via changing the amplitude of the square voltage on the electromagnet from 2 mV to 300 mV, which is the voltage on the coils before amplification. It can convert into the current and magnetic field by the Biot–Savart law in Supplementary Materials. As shown in Fig. 4(c), the THz waveforms under different voltages remain their shapes. Although the peak value of the THz signal, shown in Fig. 4(d), increases sharply with the increase of the magnetic field, it is relatively stable above the saturation field (100 mV). Because the magnetic field cannot fully magnetize the FM layer when below the saturation magnetic field, the weaker magnetic field is used, and the current creates less charge[
3. Conclusions
In conclusion, we have exhibited a novel miniaturization circuit design for a W/CoFeB/Pt sandwich heterostructure as a potential commercial THz emitter. The superiority of an alternating electromagnet with a miniaturized control circuit has been studied by comparing it with the cumbersome chopper in the THz-TDS system. Through the special design, a 2 times larger THz time-domain signal is obtained on a spin thin film, indicating full utilization of the pump power in comparison to a traditional THz-TDS system. Note that a small magnetic field, 40 G, can allow the spin thin film to generate a THz signal, meaning that a small space and current can meet the requirements for a drive circuit. Simultaneously, we have demonstrated the stability of our STE below 1 kHz square wave signal modulation, while a modulation frequency higher than the repetition rate of the laser has a negative effect on the performance of the emitter. The demonstration is based on the common spin thin film, but the approach of curtailing the STE space can be efficiently applied in both free space and optical-fiber systems. Therefore, our design is a promising route for further development of THz applications.
References
[1] C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, W. J. Padilla. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics, 8, 605(2014).
[2] S.-C. Chen, Z. Feng, J. Li, W. Tan, L.-H. Du, J. Cai, Y. Ma, K. He, H. Ding, Z.-H. Zhai, Z.-R. Li, C.-W. Qiu, X.-C. Zhang, L.-G. Zhu. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl., 9, 99(2020).
[3] H. Guerboukha, Y. Amarasinghe, R. Shrestha, A. Pizzuto, D. M. Mittleman. High-volume rapid prototyping technique for terahertz metallic metasurfaces. Opt. Express, 29, 13806(2021).
[4] D. M. Mittleman. Twenty years of terahertz imaging [Invited]. Opt. Express, 26, 9417(2018).
[5] W. L. Chan, J. Deibel, D. M. Mittleman. Imaging with terahertz radiation. Rep. Prog. Phys., 70, 1325(2007).
[6] A. P. Gong, Y. T. Qiu, X. W. Chen, Z. Y. Zhao, L. Z. Xia, Y. N. Shao. Biomedical applications of terahertz technology. Appl. Spectrosc. Rev., 55, 418(2020).
[7] M. Wan, J. J. Healy, J. T. Sheridan. Terahertz phase imaging and biomedical applications. Opt. Laser Technol., 122, 105859(2020).
[8] L. Sun, Z. Zhou, J. Zhong, Z. Shi, Y. Mao, H. Li, J. Cao, T. H. Tao. Implantable, degradable, therapeutic terahertz metamaterial devices. Small, 16, 2000294(2020).
[9] H. Li, M. Yan, W. Wan, T. Zhou, K. Zhou, Z. Li, J. Cao, Q. Yu, K. Zhang, M. Li, J. Nan, B. He, H. Zeng. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation. Adv. Sci., 6, 1900460(2019).
[10] H. Li, Z. Li, W. Wan, K. Zhou, X. Liao, S. Yang, C. Wang, J. C. Cao, H. Zeng. Toward compact and real-time terahertz dual-comb spectroscopy employing a self-detection scheme. ACS Photonics, 7, 49(2020).
[11] T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi. Terahertz wireless communications based on photonics technologies. Opt. Express, 21, 23736(2013).
[12] J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, D. M. Mittleman. Security and eavesdropping in terahertz wireless links. Nature, 563, 89(2018).
[13] D. Molter, D. Huebsch, T. Sprenger, K. Hens, K. Nalpantidis, F. Platte, G. Torosyan, R. Beigang, J. Jonuscheit, G. von Freymann, F. Ellrich. Mail inspection based on terahertz time-domain spectroscopy. Appl. Sci., 11, 950(2021).
[14] Y. Takida, K. Nawata, H. Minamide. Security screening system based on terahertz-wave spectroscopic gas detection. Opt. Express, 29, 2529(2021).
[15] M. Tal, S. Keren-Zur, T. Ellenbogen. Nonlinear plasmonic metasurface terahertz emitters for compact terahertz spectroscopy systems. ACS Photonics, 7, 3286(2020).
[16] N. M. Burford, M. O. El-Shenawee. Review of terahertz photoconductive antenna technology. Opt. Eng., 56, 010901(2017).
[17] B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, T. E. Darcie. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett., 12, 6255(2012).
[18] K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, K. H. Park. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices. Sci. Rep., 5, 13817(2015).
[19] A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, R. Gordon. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Lett., 15, 8306(2015).
[20] K. Moon, J. Choi, J.-H. Shin, S.-P. Han, H. Ko, N. Kim, J.-W. Park, Y.-J. Yoon, K.-Y. Kang, H.-C. Ryu, K. H. Park. Generation and detection of terahertz waves using low-temperature-grown GaAs with an annealing process. ETRI J., 36, 159(2014).
[21] D. S. Kim, D. S. Citrin. Coulomb and radiation screening in photoconductive terahertz sources. Appl. Phys. Lett., 88, 161117(2006).
[22] A. Singh, S. S. Prabhu. Microlensless interdigitated photoconductive terahertz emitters. Opt. Express, 23, 1529(2015).
[23] N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Trans. Terahertz Sci. Technol., 5, 223(2015).
[24] S. O. Valenzuela, M. Tinkham. Direct electronic measurement of the spin Hall effect. Nature, 442, 176(2006).
[25] Y. Xu, F. Zhang, X.-Q. Zhang, Y.-C. Du, H.-H. Zhao, T.-X. Nie, X.-J. Wu, W.-S. Zhao. Research advances in spintronic terahertz sources. Acta Phys. Sin., 69, 200703(2020).
[26] T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, A. V. Kimel. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nat. Nanotechnol., 11, 455(2016).
[27] R. Schneider, M. Fix, R. Heming, S. Michaelis de Vasconcellos, M. Albrecht, R. Bratschitsch. Magnetic-field-dependent THz emission of spintronic TbFe/Pt layers. ACS Photonics, 5, 3936(2018).
[28] T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Munzenberg, M. Klaui, T. Kampfrath. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics, 10, 483(2016).
[29] U. Nandi, M. S. Abdelaziz, S. Jaiswal, G. Jakob, O. Gueckstock, S. M. Rouzegar, T. S. Seifert, M. Klaeui, T. Kampfrath, S. Preu. Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator. Appl. Phys. Lett., 115, 022405(2019).
[30] D. Kong, X. Wu, B. Wang, T. Nie, M. Xiao, C. Pandey, Y. Gao, L. Wen, W. Zhao, C. Ruan, J. Miao, Y. Li, L. Wang. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv. Opt. Mater., 7, 1900487(2019).
[31] R. Sun, S. Yang, X. Yang, E. Vetter, D. Sun, N. Li, L. Su, Y. Li, Y. Li, Z.-Z. Gong, Z.-K. Xie, K.-Y. Hou, Q. Gul, W. He, X.-Q. Zhang, Z.-H. Cheng. Large tunable spin-to-charge conversion induced by hybrid Rashba and Dirac surface states in topological insulator heterostructures. Nano Lett., 19, 4420(2019).
[32] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, Q. J. Wang. Electrically pumped topological laser with valley edge modes. Nature, 578, 246(2020).
[33] X. Wang, L. Cheng, D. Zhu, Y. Wu, M. Chen, Y. Wang, D. Zhao, C. B. Boothroyd, Y. M. Lam, J.-X. Zhu, M. Battiato, J. C. W. Song, H. Yang, E. E. M. Chia. Ultrafast spin-to-charge conversion at the surface of topological insulator thin films. Adv. Mater., 30, 1802356(2018).
[34] P. Seifert, K. Vaklinova, S. Ganichev, K. Kern, M. Burghard, A. W. Holleitner. Spin Hall photoconductance in a three-dimensional topological insulator at room temperature. Nat. Commun., 9, 331(2018).
[35] H. Zhao, X. Chen, C. Ouyang, H. Wang, D. Kong, P. Yang, B. Zhang, C. Wang, G. Wei, T. Nie, W. Zhao, J. Miao, Y. Li, L. Wang, X. Wu. Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3. Adv. Photonics, 2, 066003(2020).
[36] T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Noetzold, S. Maehrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Bluegel, M. Wolf, I. Radu, P. M. Oppeneer, M. Muenzenberg. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 8, 256(2013).
[37] W. Jia, M. Liu, Y. Lu, X. Feng, Q. Wang, X. Zhang, Y. Ni, F. Hu, M. Gong, X. Xu, Y. Huang, W. Zhang, Y. Yang, J. Han. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 10, 11(2021).
[38] M. Chen, K. Lee, J. Li, L. Cheng, Q. Wang, K. Cai, E. E. M. Chia, H. Chang, H. Yang. Anisotropic picosecond spin-photocurrent from Weyl semimetal WTe2. ACS Nano, 14, 3539(2020).
[39] X. Chen, X. Wu, S. Shan, F. Guo, D. Kong, C. Wang, T. Nie, C. Pandey, L. Wen, W. Zhao, C. Ruan, J. Miao, Y. Li, L. Wang. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters. Appl. Phys. Lett., 115, 221104(2019).
[40] O. Gueckstock, L. Nádvorník, T. S. Seifert, M. Borchert, G. Jakob, G. Schmidt, G. Woltersdorf, M. Kläui, M. Wolf, T. Kampfrath. Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz. Optica, 8, 1013(2021).
[41] S. O. Valenzuela, M. Tinkham. Direct electronic measurement of the spin Hall effect. Nature, 442, 176(2006).
[42] O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, A. Hoffmann. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett., 104, 046601(2010).
[43] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photonics Rev., 5, 124(2011).
[44] K. Ahi, S. Shahbazmohamadi, N. Asadizanjani. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng., 104, 274(2018).
[45] H. Guerboukha, K. Nallappan, M. Skorobogatiy. Toward real-time terahertz imaging. Adv. Opt. Photonics, 10, 843(2018).
[46] Q. Zhang, Z. Luo, H. Li, Y. Yang, X. Zhang, Y. Wu. Terahertz emission from anomalous Hall effect in a single-layer ferromagnet. Phys. Rev. Appl., 12, 054027(2019).

Set citation alerts for the article
Please enter your email address