
- Chinese Optics Letters
- Vol. 20, Issue 4, 041902 (2022)
Abstract
1. Introduction
In recent years, much attention has been paid to the investigation on electromagnetically induced transparency (EIT) in cold Rydberg atomic gases[
Light bullets (LBs)[
In this work, we propose a scheme to realize the active control of the nonlocal LBs in a Rydberg atomic gas. We show that the
2. Model
The system under study is a cold three-level atomic gas working with a Rydberg-EIT scheme, shown in Fig. 1(a). Here, the levels
Figure 1.(a) Excitation scheme of the Rydberg EIT. |1〉, |2〉, and |3〉 are, respectively, the ground, intermediate, and Rydberg states; Ωp (Ωc) is the half-Rabi frequency of the probe (control) laser field; Γ12 (∼MHz) and Γ23 (∼kHz) are, respectively, decay rates from |2〉 to |1〉 and |3〉 to |2〉; Δ2 = ωp − (ω2 − ω1) and Δ3 = ωp + ωc − (ωc − ω1) are, respectively, the one- and two-photon detunings. ℏV(
For realizing the active control on the LBs, a weak gradient magnetic field is assumed to act on the atomic gas, with the form
Under electric-dipole and rotating-wave approximations, the Hamiltonian of the atomic gas including the Rydberg-Rydberg interaction is given by
Here,
The dynamics of the atoms is controlled by the Heisenberg equation of motion for the atomic operators
Here,
The dynamics of the probe field is described by the Maxwell equation, which, under the slowly varying envelope approximation, reads
To be concrete in the following calculations, we choose strontium atoms (
The result shown in Fig. 1(c) is
3. (3 + 1)D Nonlinear Envelope Equation
Our main aim is to implement an active control of LBs in the system. To make the related physical mechanism transparent, we first derive the equation describing the nonlinear evolution of the probe-field envelope. For a modulated plane-wave of the probe field, we assume
Here,
In Eq. (6),
We then consider the formation of LBs when the gradient magnetic field is absent (i.e.,
4. Manipulation of LBs
We now turn to investigate what will happen for a nonlocal LB when an external gradient magnetic field is present. As a first step, we consider Eq. (6) in the absence of the Kerr nonlinearity (i.e.,
We see that, due to the presence of the magnetic field, the motion of the linear wave is changed, and its trajectory in the
In the presence of the Kerr nonlinearities, it is hard to get an exact expression for the motion trajectory of the probe pulse. In this situation, however, one can obtain the trajectory deflection by resorting to a numerical simulation for solving Eq. (6). Figure 2(a) shows the result of the 3D motion trajectory of an LB as a function of
Figure 2.Stern–Gerlach deflections of nonlocal LBs. (a) 3D motion trajectory of an LB as a function of x/R0, y/R0, and z/(2Ldiff) in the presence of the gradient magnetic field (B1,B2) = (3.2, 0) mG cm−1; (c) 3D motion trajectory of the LB for (B1, B2) = (6.4, 0) mG cm−1. (b) and (d) are trajectories of the LB in the x–z plane, corresponding, respectively, to panels (a) and (c).
In addition, richer motion trajectories of the LB can be obtained by using different magnetic fields. To prove this, we consider a time-varying gradient magnetic field of the form
Figure 3.Motion trajectory of the LB in the presence of a time-varying gradient magnetic field. (a) Trajectory of the LB as a function of x/R0, y/R0, and z/(2Ldiff) when the time-varying gradient magnetic field of Eq. (
5. Conclusion
We have shown that nonlocal LBs created in a cold Rydberg atomic gas can be actively manipulated by using a weak gradient magnetic field. In particular, the LBs can experience significant Stern–Gerlach deflections when a weak external magnetic field is applied, and their motion paths may be controlled through the adjustment of the magnetic-field gradient. The results reported here are useful not only for understanding novel properties of the LBs in nonlocal optical media but also for finding new ways for precision measurements of magnetic fields.
References
[1] M. Saffman, T. G. Walker, K. Mϕlmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313(2010).
[2] J. D. Pritchard, K. J. Weatherill, C. S. Adams. Nonlinear optics using cold Rydberg atoms. Annual Review of Cold Atoms and Molecules, 1, 301(2012).
[3] O. Firstenberg, C. S. Adams, S. Hofferberth. Nonlinear quantum optics mediated by Rydberg interactions. J. Phys. B, 49, 152003(2016).
[4] C. Murray, T. Pohl. Quantum and nonlinear optics in strongly interacting atomic ensembles. Advances in Atomic, Molecular, and Optical Physics, 65, 321(2016).
[5] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, C. S. Adams. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett., 105, 193603(2010).
[6] S. Sevinçli, N. Henkel, C. Ates, T. Pohl. Nonlocal nonlinear optics in cold Rydberg gases. Phys. Rev. Lett., 107, 153001(2011).
[7] D. Yan, C. Cui, Y. Liu, L. Song, J. Wu. Normal and abnormal nonlinear electromagnetically induced transparency due to dipole blockade of Rydberg excitation. Phys. Rev. A, 87, 023827(2013).
[8] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, M. D. Lukin. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett., 107, 133602(2011).
[9] O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletić. Attractive photons in a quantum nonlinear medium. Nature, 502, 71(2013).
[10] D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, C. S. Adams. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett., 110, 103001(2013).
[11] L. Li, A. Kuzmich. Quantum memory with strong and controllable Rydberg-level interactions. Nat. Commun., 7, 13618(2016).
[12] D. Tiarks, S. Schmidt, G. Rempe, S. Dürr. Optical π phase shift created with a single-photon pulse. Sci. Adv., 2, e1600036(2016).
[13] H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A. Jones, C. S. Adams. Contactless nonlinear optics mediated by long-range Rydberg interactions. Nat. Phys., 13, 655(2016).
[14] Z. Bai, G. Huang. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction. Opt. Express, 24, 4442(2016).
[15] H. Wu, Y. Li, Z. Yang, S. Zheng. Quantum signature for laser-driven correlated excitation of Rydberg atoms. Phys. Rev. A, 95, 013842(2017).
[16] Q. Y. Liang, A. V. Venkatramani, S. H. Cantu, T. L. Nicholson, M. J. Gullans, A. V. Gorshkov, J. D. Thompson, C. Chin, M. D. Lukin, V. Vuletić. Observation of three-photon bound states in a quantum nonlinear medium. Science, 359, 783(2018).
[17] Z. Bai, W. Li, G. Huang. Stable single light bullets and vortices and their active control in cold Rydberg gases. Optica, 6, 309(2019).
[18] S. Bai, X. Han, J. Bai, Y. Jiao, J. Zhao, S. Jia, G. Raithel. Cesium nDJ+6S1/2 Rydberg molecules and their permanent electric dipole moments. Phys. Rev. Res, 2, 033525(2020).
[19] D. Ding, H. Busche, B. Shi, G. Guo, C. S. Adams. Phase diagram and self-organizing dynamics in a thermal ensemble of strongly interacting Rydberg atoms. Phys. Rev. X, 10, 021023(2020).
[20] C. Fan, D. Rossini, H. Zhang, J. Wu, M. Artoni, G. C. La Rocca. Discrete time crystal in a finite chain of Rydberg atoms without disorder. Phys. Rev. A, 101, 013417(2020).
[21] M. Zhou, J. Liu, P. Sun, Z. An, J. Li, X. Bao, J. Pan. Experimental creation of single Rydberg excitations via adiabatic passage. Phys. Rev. A, 102, 013706(2020).
[22] K. Liao, H. Tu, S. Yang, C. Chen, X. Liu, J. Liang, X. Zhang, H. Yan, S. Zhu. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A, 101, 053432(2020).
[23] M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, S. Jia. Quantum superhet based on microwave-dressed Rydberg atoms. Nat. Phys., 16, 911(2020).
[24] Y. Liu, Y. Sun, Z. Fu, P. Xu, X. Wang, X. He, J. Wang, M. Zhan. Infidelity induced by ground-Rydberg decoherence of the control qubit in a two-qubit Rydberg-blockade gate. Phys. Rev. Appl., 15, 054020(2021).
[25] J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, A. M. Steinberg. Observation of a large, resonant, cross-Kerr nonlinearity in a cold Rydberg gas. Phys. Rev. Res., 1, 033193(2019).
[26] C. Chen, F. Yang, X. Wu, C. Shen, M. K. Tey, L. You. Two-color optical nonlinearity in an ultracold Rydberg atom gas mixture. Phys. Rev. A, 103, 053303(2021).
[27] M. Moreno-Cardoner, D. Goncalves, D. E. Chang. Quantum nonlinear optics based on two-Rydberg atom arrays(2021).
[28] S. Baur, D. Tiarks, G. Rempe, S. Dürr. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett., 112, 073901(2014).
[29] W. Li, I. Lesanovsky. Coherence in a cold-atom photon switch. Phys. Rev. A, 92, 043828(2015).
[30] H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, S. Hofferberth. Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Fórster resonances. Nat. Commun., 7, 12480(2016).
[31] C. R. Murray, T. Pohl. Coherent photon manipulation in interacting atomic ensembles. Phys. Rev. X, 7, 031007(2017).
[32] D. Tiarks, S. Baur, K. Schneider, S. Dürr, G. Rempe. Single-photon transistor using a Förster resonance. Phys. Rev. Lett., 113, 053602(2014).
[33] F. Ripka, H. Kübler, R. Löw, T. Pfau. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science, 362, 446(2018).
[34] Y. Silberberg. Collapse of optical pulses. Opt. Lett., 15, 1282(1990).
[35] Y. S. Kivshar, G. P. Agrawal. Optical Solitons: From Fibers to Photonic Crystals(2006).
[36] M. Belić, N. Petrović, W.-P. Zhong, R.-H. Xie, G. Chen. Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett., 101, 123904(2008).
[37] Y. V. Kartashov, B. A. Malomed, L. Torner. Solitons in nonlinear lattices. Rev. Mod. Phys., 83, 247(2011).
[38] Q. Zhang, Z. Bai, G. Huang. Fast-responding property of electromagnetically induced transparency in Rydberg atoms. Phys. Rev. A, 97, 043821(2018).
[39] S. Mauger, J. Millen, M. P. A. Jones. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency. J. Phys. B, 40, F319(2007).
[40] The frequency and wave number of the probe field are given by ωp+ω and kp+K(ω), respectively. Thus, ω=0 corresponds to the center frequency of the probe field.
[41] Z. Chen, G. Huang. Trapping of weak signal pulses by soliton and trajectory control in a coherent atomic gas. Phys. Rev. A, 89, 033817(2014).
[42] In the related numerical simulation, a 10% random disturbance has been added into the initial condition.

Set citation alerts for the article
Please enter your email address