
- Chinese Optics Letters
- Vol. 20, Issue 11, 110501 (2022)
Abstract
1. Introduction
In 1992, Allen et al. firstly, to the best of our knowledge, demonstrated a helical phase structure of light with wavefront singularities carrying orbital angular momentum (OAM)[
Many methods are proposed to measure the TC of vortex beams, which can be basically divided into three techniques: interferometry, intensity analysis of OV beams, and diffractometry. Nevertheless, the first technique demands cumbersome interferometric setups and finely aligned optical elements[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Since the edge diffraction of OV beams was firstly investigated and demonstrated in 1998[
Furthermore, special attention should also be paid to the edge (or angular[
In this paper, only one simple plate is utilized to conveniently measure the TC of OVs by its edge diffraction in the near-field no matter whether the plate is opaque or not. Analogous to the interferogram of an OV beam with a plane wave, the resultant fork-shaped diffraction fringes can be used to determine the TC value as well as the handedness of the OV beam. Tolerance for rotated off-axis plate and diffraction distance is demonstrated theoretically and experimentally. In addition, two methods to enhance the diffraction pattern are proposed: computational diffraction fringe enhancement by background deduction and the use of a translucent plate. The parallelism, transparency, and thickness required for the plate are also analyzed.
2. Theoretical Method
Assuming a paraxial monochromatic Gaussian-background vortex beam propagating along axis
Figure 1.Scheme of TC measurement of a vortex beam (l = 3 exampled) with a screen plate S located at the x0−y0 plane (z = 0). The cross section of the plate is shown at the bottom left. The diffraction patterns aligned along the z axis illustrate the evolution of the OV edge diffraction.
Considering that the screen plate located at the x0−y0 plane is rectilinear hard-edged, and the size of the plate is much larger than the beam waist (shown as Fig. 1), then the transmittance function of the plate can read
Particularly, when the cross section of S is an isosceles trapezoid, i.e.,
After the edge diffraction, the light field gives the complex amplitude at the distance of
Equation (6) can be changed to the form of Fourier transformation
3. Simulation Results of the Edge Diffraction
3.1. Opaque screen
The edge diffraction by an opaque screen (
Note that the radius of the OV beam at the maximum of intensity is associated with its TC (
Here, we define the normalized deviation of the plate edge as
Figure 2 calculated via Eq. (8) shows the simulated intensity distributions of the edge diffraction of a blocked OV beam with an opaque screen. The wavelength used in the simulation is 1064 nm, and the waist radius is 1 mm, giving
Figure 2.Simulated intensity profiles of OV beams edge-diffracted by an opaque screen for (a) l = −2 to 2 in steps of 1, (b) r¯
It is shown in Fig. 2(c) that the pattern rotates as the edge rotates due to the rotational symmetry of the OV beam. Thus, the orientation of the fork-shaped pattern should be defined relative to the screen edge. The evolution of the diffraction pattern along the
3.2. Translucent plate
As the screen plate becomes transparent (Fig. 3), the blocked part goes through an additional phase
Figure 3.Simulated intensity profiles at l = 3, r¯
4. Experiment Results and Discussions
The edge-diffraction-based TC measurement is also experimentally demonstrated, and the setup is shown in Fig. 4(a). A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is used to produce the fundamental Gaussian mode at
Figure 4.(a) Experimental setup for generating the OV beam using SLM1 loaded with (b) fork-shaped blazed gratings and measuring the TC using SLM2 loaded with (c) a phase step. λ/2, half-wave plate; SLM, spatial light modulator; S, an opaque screen in Fig.
As shown in Fig. 4(a), in the case of
Figure 5 shows the experimental results of the truncated OV beam of
Figure 5.Experimental intensity profiles of the OV beam (l = 3) at z¯ of (a) 0.05, (b), (d) 0.1, and (c) 0.2 after edge diffraction by (a)–(c) an opaque or (d) a transparent plate (d¯
In addition, the edge-diffraction patterns of the transparent plate at
The experimental results for the measurement of higher TCs of OV beams with
Figure 6.Experimental intensity profiles for (a) unperturbed and (b) opaque screen (r¯
This method can remain steady for much higher TC measurements but is limited by the resolution and field of view of the CCD due to the increasing ring size and fringe density at the end away from the plate edge. In this case, one can extend the diffraction distance or reduce the edge deviation from the center to increase the stripe spacing.
5. Conclusion
In conclusion, it is demonstrated theoretically and experimentally that the edge of a plate can be used to measure the TC of OV beams at a proper diffraction distance in the near-field. The number of redundant fringes in the diffraction fork-shaped pattern is equal to the TC value, and the orientation of the fork relative to the plate edge indicates the handedness of the OV beam. Simulated results of the opaque screen indicate that the diffraction fringe contrast increases when the screen edge moves closer to the center of the OV beam, and the fringe density decreases as the diffraction distance increases, forming a three-dimensional space to control the diffraction fringes. It turns out that the edge diffraction of translucent plates can also be used to form fork fringes based on the self-interference of the OV beam with a rectilinear phase step. The transparency of the plate affects the degree of interference, and the angle between two surfaces of the plate determines the interference angle. However, experimental results do not show obvious self-interference from the simulation due to the intensity differences between the generated Kummer beam and the standard LG beam. Since the generated OV beam with high TCs is accompanied by the intrinsic large central dark area and low purity limited by the SLM resolution, the additional computational diffraction fringe enhancement by removing the background profile of the undiffracted beam from the diffraction pattern is recommended and applied in our analysis for
This TC measurement method for OV beams takes good advantage of using only one simple and easily available screen whether it is opaque or not. As the edge-diffraction pattern is relevant to the phase of the incident light field, the method could be used to diagnose the phase structure and energy flow for other OV beams, such as composed vortices (a method to measure fractional TC has been proposed in Ref. [34]) and vector vortices[
References
[1] L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).
[2] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810(2003).
[3] J. Ng, Z. Lin, C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett., 104, 103601(2010).
[4] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448(2004).
[5] A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics, 8, 234(2014).
[6] G. C. Berkhout, M. W. Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett., 101, 100801(2008).
[7] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, J. Courtial. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88, 257901(2002).
[8] H. I. Sztul, R. R. Alfano. Double-slit interference with Laguerre–Gaussian beams. Opt. Lett., 31, 999(2006).
[9] M. V. Vasnetsov, V. V. Slyusar, M. S. Soskin. Mode separator for a beam with an off-axis optical vortex. Quantum Electron., 31, 464(2001).
[10] P. Kumar, N. K. Nishchal. Modified Mach–Zehnder interferometer for determining the high-order topological of Laguerre–Gaussian vortex beams. J. Opt. Soc. Am. A, 36, 1447(2019).
[11] P. Kumar, N. K. Nishchal. Self-referenced interference of laterally displaced vortex beams for topological charge determination. Opt. Commun., 459, 125000(2020).
[12] A. Lubk, G. Guzzinati, F. Borrnert, J. Verbeeck. Transport of intensity phase retrieval of arbitrary wave fields including vortices. Phys. Rev. Lett., 111, 173902(2013).
[13] J. M. Hickmann, E. J. Fonseca, W. C. Soares, S. Chavez-Cerda. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett., 105, 053904(2010).
[14] D. P. Ghai, P. Senthilkumaran, R. S. Sirohi. Single-slit diffraction of an optical beam with phase singularity. Opt. Lasers Eng., 47, 123(2009).
[15] H. Tao, Y. Liu, Z. Chen, J. Pu. Measuring the topological charge of vortex beams by using an annular ellipse aperture. Appl. Phys. B, 106, 927(2012).
[16] S. N. Alperin, R. D. Niederriter, J. T. Gopinath, M. E. Siemens. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt. Lett., 41, 5019(2016).
[17] P. Vaity, J. Banerji, R. P. Singh. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys. Lett. A, 377, 1154(2013).
[18] K. Dai, C. Gao, L. Zhong, Q. Na, Q. Wang. Measuring OAM states of light beams with gradually-changing-period gratings. Opt. Lett., 40, 562(2015).
[19] Z. Liu, S. Gao, W. Xiao, J. Yang, X. Huang, Y. Feng, L. I. Jianping, L. I. U. Weiping, L. I. Zhaohui. Measuring high-order optical orbital angular momentum with a hyperbolic gradually changing period pure-phase grating. Opt. Lett., 43, 3076(2018).
[20] S. Fu, T. Wang, Y. Gao, C. Gao. Diagnostics of the topological charge of optical vortex by a phase-diffractive element. Chin. Opt. Lett., 14, 080501(2016).
[21] S. Rasouli, S. Fathollazade, P. Amiri. Simple, efficient and reliable characterization of Laguerre–Gaussian beams with non-zero radial indices in diffraction from an amplitude parabolic-line linear grating. Opt. Express, 29, 29661(2021).
[22] I. V. Basistiy, V. K. Lyubov, I. G. Marienko, S. S. Marat, V. V. Mikhail. Experimental observation of rotation and diffraction of a singular light beam. Proc. SPIE, 3487, 34(1998).
[23] I. G. Marienko, M. S. Soskin, M. V. Vasnetsov. Diffraction of optical vortices. Fourth International Conference on Correlation Optics, 27(1999).
[24] J. Masajda. Gaussian beams with optical vortex of charge 2- and 3-diffraction by a half-plane and slit. Opt. Appl., 30, 247(2000).
[25] A. Y. Bekshaev, K. A. Mohammed. Spatial profile and singularities of the edge-diffracted beam with a multicharged optical vortex. Opt. Commun., 341, 284(2015).
[26] J. Arlt. Handedness and azimuthal energy flow of optical vortex beams. J. Mod. Opt., 50, 1573(2003).
[27] A. Y. Bekshaev, K. A. Mohammed, I. A. Kurka. Transverse energy circulation and the edge diffraction of an optical vortex beam. Appl. Opt., 53, B27(2014).
[28] H. X. Cui, X. L. Wang, B. Gu, Y. N. Li, J. Chen, H. T. Wang. Angular diffraction of an optical vortex induced by the Gouy phase. J. Opt., 14, 055707(2012).
[29] R. Chen, X. Zhang, Y. Zhou, H. Ming, A. Wang, Q. Zhan. Detecting the topological charge of optical vortex beams using a sectorial screen. Appl. Opt., 56, 4868(2017).
[30] P. Liu, B. Lü. Propagation of Gaussian background vortex beams diffracted at a half-plane screen. Opt. Laser Technol., 40, 227(2008).
[31] F. Flossmann, U. T. Schwarz, M. Maier. Propagation dynamics of optical vortices in Laguerre–Gaussian beams. Opt. Commun., 250, 218(2005).
[32] A. Bekshaev, A. Khoroshun, L. Mikhaylovskaya. Transformation of the singular skeleton in optical-vortex beams diffracted by a rectilinear phase step. J. Opt., 21, 084003(2019).
[33] A. Y. Bekshaev, A. I. Karamoch. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun., 281, 1366(2008).
[34] S. M. A. Hosseini-Saber, E. A. Akhlaghi, A. Saber. Diffractometry-based vortex beams fractional topological charge measurement. Opt. Lett., 45, 3478(2020).
[35] Z. Man, Z. Xi, X. Yuan, R. Burge, H. P. Urbach. Dual coaxial longitudinal polarization vortex structures. Phys. Rev. Lett., 124, 103901(2020).
[36] A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, G. Leuchs. Classical and quantum properties of cylindrically polarized states of light. Opt. Express, 19, 9714(2011).

Set citation alerts for the article
Please enter your email address