
- Chinese Optics Letters
- Vol. 21, Issue 3, 031401 (2023)
Abstract
1. Introduction
Mid-infrared laser sources emitting in the 2–2.5 µm special region have attracted a great deal of interest in recent years. Such emission falls in the atmospheric transparency window. Some important gas molecules such as
A promising approach to generate 2.3 µm laser emission is using the
Figure 1.Energy-level scheme of Tm3+ ions in host crystal.
So far, continuous-wave (CW) 2.3 µm Tm lasers have also been reported by several groups. For example, Wang et al. reported an a-cut Tm:YAP laser generating a maximum CW output power of 1.12 W at dual-wavelength of 2274 and 2383 nm with a slope efficiency of 14.0%[12]. Guillemot et al. reported a CW Tm:YAG laser delivering a maximum output power of 1.07 W at 2.19 and 2.32 µm with a slope efficiency of 46.3%[10]. Muti et al. demonstrated a Tm:KYF laser operating at 2.34 µm and generating 0.12 W with a slope efficiency of 18%[19]. Loiko et al. reported a diode-pumped quasi-CW
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
However, to our knowledge, laser emission on the
The main goal of the work described here is to report laser emission on the
2. Experimental Design
The scheme of a diode-pumped
Figure 2.Scheme of a Tm:YVO4 laser operating on the 3H4→3H5 and 3F4→3H6 transitions.
The simple linear resonant cavity was composed of an input mirror (M1) and an output coupler (M2). M1 was a flat input mirror, which was designed to be high-transmittance coated at 780–810 nm and high-reflection coated at 1900–2400 nm (
3. Experimental Results and Discussion
The feasibility of achieving laser emissions on the
Figure 3.Lasing spectrum of the Tm:YVO4 laser.
In this experiment, the output powers and pump power were measured by a power meter (Coherent, PM30). The absorbed pump power of the
Figure 4.Output powers versus incident pump power for the Tm:YVO4 laser at the heat sink temperatures of 12°C and 20°C.
Figure 5.Output powers versus incident pump power for the Tm:YVO4 laser at the heat sink temperature of 12°C.
As seen in Fig. 5, the laser emissions on the
The polarization states of the output laser beams were also measured by a Glan prism. The laser emissions on the
By using the knife-edge method, the output laser beam radius of
Figure 6.Measured beam qualities of the Tm:YVO4 laser at maximum output power: (a) M2 = 2.34 at 2292 and M2 = 2.27 at 2363 nm; (b) M2 = 1.61 at 2108 nm.
For efficient laser operation at 2 µm (
4. Conclusion
In conclusion, a Tm-doped vanadate laser operating on the
References
[1] F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé. Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing. IEEE J. Sel. Top. Quantum Electron., 3, 1103(1997).
[2] A. Garnache, A. Liu, L. Cerutti, A. Campargue. Intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser at 2.3 µm: application to water and carbon dioxide. Chem. Phys. Lett., 416, 22(2005).
[3] J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner. Tunable laser diode system for noninvasive blood glucose measurements. Appl. Spectrosc., 59, 1480(2005).
[4] S. T. Fard, W. Hofmann, P. T. Fard, G. Bohm, M. Ortsiefer, E. Kwok, M.-C. Amann, L. Chrostowski. Optical absorption glucose measurements using 2.3 µm vertical-cavity semiconductor lasers. IEEE Photon. Technol. Lett., 20, 930(2008).
[5] J. Zhao, Y. Li, S. Zhang, L. Li, X. Zhang. Diode-pumped actively Q-switched Tm:YAP/BaWO4 intracavity Raman laser. Opt. Express, 23, 10075(2015).
[6] R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M. Amann, G. Roelkens. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express, 24, 21081(2016).
[7] S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, V. Gapontsev. Multi-watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm. Opt. Express, 24, 1616(2016).
[8] U. Demirbas, A. Sennaroglu. Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm. Opt. Lett., 31, 2293(2006).
[9] J. A. Caird, L. G. DeShazer, J. Nella. Characteristics of room temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3. IEEE J. Quantum Electron., 11, 874(1975).
[10] L. Guillemot, P. Loiko, E. Kifle, J.-L. Doualan, A. Braud, F. Starecki, T. Georges, J. Rouvillain, A. Hideur, P. Camy. Watt-level midinfrared continuous-wave Tm:YAG laser operating on the 3H4→3H5 transition. Opt. Mater., 101, 109745(2020).
[11] L. Guillemot, P. Loiko, A. Braud, J.-L. Doualan, A. Hideur, M. Koselja, R. Moncorgé, P. Camy. Continuous-wave Tm:YAlO3 laser at ∼2.3 µm. Opt. Lett., 44, 5077(2019).
[12] F. Wang, H. Huang, F. Wu, H. Chen, Y. Bao, Z. Li, O. L. Antipov, S. S. Balabanov, D. Shen. 2.3–2.5 µm laser operation of LD-pumped Tm:YAP on the 3H4→3H5 transition. Opt. Mater., 115, 111054(2021).
[13] E. Kifle, P. Loiko, L. Guillemot, J. Doualan, F. Starecki, A. Braud, T. Georges, J. Rouvillain, P. Camy. Watt-level diode-pumped thulium lasers around 2.3 µm. Appl. Opt., 59, 7530(2020).
[14] L. Dong, H. Chu, S. Xu, S. Zhao, D. Li. Sulfur-doped graphitic carbon nitride for Tm:YAIO3 laser operation at 2.3 µm. Opt. Lett., 46, 2043(2021).
[15] J. F. Pinto, L. Esterowitz, G. H. Rosenblatt. Tm3+:YLF laser continuously tunable between 2.20 and 2.46 µm. Opt. Lett., 19, 883(1994).
[16] I. Yorulmaz, A. Sennaroglu. Low-threshold diode-pumped 2.3-µm Tm3+:YLF Lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1601007(2018).
[17] H. Huang, S. Wang, H. Chen, O. L. Antipov, S. S. Balabanov, D. Shen. High power simultaneous dual-wavelength CW and passively-Q-switched laser operation of LD pumped Tm:YLF at 1.9 and 2.3 µm. Opt. Express, 27, 38593(2019).
[18] F. Canbaz, I. Yorulmaz, A. Sennaroglu. Kerr-lens mode-locked 2.3-µm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Opt. Lett., 42, 3964(2017).
[19] A. Muti, M. Tonelli, V. Petrov, A. Sennaroglu. Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3 µm. Opt. Lett., 44, 3242(2019).
[20] L. Guillemot, P. Loiko, R. Soulard, A. Braud, J. Doualan, A. Hideur, P. Camy. Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H4→3H5transition. Opt. Express, 28, 3451(2020).
[21] A. Muti, F. Canbaz, M. Tonelli, J. E. Bae, F. Rotermund, V. Petrov, A. Sennaroglu. Graphene mode-locked operation of Tm3+:YLiF4 and Tm3+:KY3F10 lasers near 2.3 µm. Opt. Lett., 45, 656(2020).
[22] V. Sudesh, J. A. Piper. Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 µm. IEEE J. Quantum Electron., 36, 879(2000).
[23] P. Loiko, E. Kifle, L. Guillemot, J. Doualan, F. Starecki, A. Braud, M. Aguiló, F. Díaz, V. Petrov, X. R. Mateos, P. Camy. Highly efficient 2.3 µm thulium lasers based on a high-phonon-energy crystal: evidence of vibronic-assisted emissions. J. Opt. Soc. Am. B, 38, 482(2021).
[24] P. Loiko, R. Soulard, L. Guillemot, G. Brasse, J. L. Doualan, A. Braud, A. Tyazhev, A. Hideur, F. Druon, P. Camy. Efficient Tm:LiYF4 Lasers at ∼2.3 µm: effect of energy-transfer upconversion. IEEE J. Quantum Electron., 55, 1700212(2019).
[25] H. Hu, H. Huang, J. Huang, J. Deng, W. Weng, J. Li, W. Lin. Watt-level passively Q-switched Tm:YVO4 laser with few-layer WSe2 saturable absorber. Infrared Phys. Technol., 113, 103554(2021).
[26] H. Saito, S. Chaddha, R. S. E. Chang, N. Djeu. Efficient 1.94-µm Tm3+ laser in YVO4 host. Opt. Lett., 17, 189(1992).
[27] R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, T. Lukasiewicz. Effect of temperature on spectroscopic features relevant to laser performance of YVO4:Tm3+, GdVO4:Tm3+, and LuVO4:Tm3+ crystals. Opt. Lett., 35, 3940(2010).
[28] J. Šulc, P. Koranda, P. L. Černý, H. Jelínková, Y. Urata, M. Higuchi, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, G. Dominiak-Dzik, M. Sobczyk. Tunable lasers based on diode pumped Tm-doped vanadates Tm:YVO4, Tm:GdVO4, and Tm:LuVO4. Proc. SPIE, 6871, 68711V(2008).
[29] Y. Urata, S. Wada. 808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature. Appl. Opt., 44, 3087(2005).
[30] R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, M. Higuchi. Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals. Phys. Rev. B, 74, 035103(2006).
[31] J. J. Zayhowski, J. Harrison, C. Dill, J. Ochoa. Tm:YVO4 microchip laser. Appl. Opt., 34, 435(1995).

Set citation alerts for the article
Please enter your email address