
- Chinese Optics Letters
- Vol. 19, Issue 8, 082504 (2021)
Abstract
Keywords
1. Introduction
Ultraviolet (UV) photodetectors (PDs) have obtained wide applications in many fields due to their huge advantages, such as superior thermal stability, high sensitivity, and reliability[
As is well known, MSM PD structures consist of two metal electrodes with back-to-back Schottky contact, one in positive contact and the other in reverse bias contact. The ideal MSM PDs with Schottky contact are not expected to exhibit an internal gain, and the responsivity should not change with the applied bias[
Here, we have fabricated an
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Experimental Details
Figure 1(a) illustrates the epitaxial structure of the
Figure 1.(a) Epitaxial structure of the Al0.55Ga0.45N solar-blind MSM PD. (b) Optical microscopy image of the Al0.55Ga0.45N MSM PD with an area of 200 µm × 200 µm.
The crystal phase and morphology of the
3. Results and Discussion
Figure 2(a) displays the omega-2theta XRD pattern of the
Figure 2.(a) Omega-2theta XRD pattern of the Al0.55Ga0.45N (002) plane. (b) Typical 5 µm × 5 µm AFM image of the AlGaN epitaxial layer. (c), (d) TEM images of the AlGaN/AlN interface.
Figure 3(a) shows the transmission spectrum of the
Figure 3.(a) Transmission spectrum of Al0.55Ga0.45N active layer. (b) Photo-response spectra of the Al0.55Ga0.45N PD from 2 to 10 V at room temperature on the logarithmic scale.
Figure 4 shows the I-V curves of the
Figure 4.I-V curves of the Al0.55Ga0.45N MSM PD in the dark and under 230 nm illumination at 25°C and 150°C. The inset is the breakdown voltage of the PD.
In order to study the carrier transport mechanism of the high-Al-content
Figure 5.Temperature-dependent I-V characteristics of the Al0.55Ga0.45N MSM PD in dark conditions.
It is well known that the current related to PFE is expressed as[
Figure 6.(a) Derived ln(IPF/E) versus sqrt(E) curves employing PFE as carrier transport mechanism at high bias voltages. (b) Derived linear fit of parameter m(T) versus q/kT. (c) Linear fit of parameter n(T) versus q/kT. (d) Schematic drawing of the energy band of the metal/AlGaN interface.
As discussed above, the high internal gain existing in the
Figure 7.Band diagram in the cross section of the AlGaN photoconductor. The dashed line represents the contraction of the band bending around the dislocation under UV illumination.
4. Conclusion
In conclusion, high-Al-content
References
[1] D. Y. Guo, K. Chen, S. L. Wang, F. M. Wu, A. P. Liu, C. R. Li, P. G. Li, C. K. Tan, W. H. Tang. Self-powered solar-blind photodetectors based on α/β phase junction of Ga2O3. Phys. Rev. Appl., 13, 024051(2020).
[2] C. H. Zeng, W. K. Lin, T. He, Y. K. Zhao, Y. H. Sun, Q. Cui, X. Zhang, S. L. Lu, X. M. Zhang, Y. M. Xu, M. Kong, B. S. Zhang. Ultraviolet-infrared dual-color photodetector based on vertical GaN nanowire array and graphine. Chin. Opt. Lett., 18, 112501(2020).
[3] X. Y. Zhou, X. Tan, Y. G. Wang, X. B. Song, T. T. Han, J. Li, W. L. Lu, G. D. Gu, S. X. Liang, Y. J. Lu, Z. H. Feng. High-performance 4H-SiC p-i-n ultraviolet avalanche photodiodes with large active area. Chin. Opt. Lett., 17, 090401(2019).
[4] B. Zhao, F. Wang, H. Y. Chen, Y. P. Wang, M. M. Jiang, X. S. Fang, D. X. Zhao. Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire. Nano. Lett., 15, 3988(2015).
[5] J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, D. Z. Shen. ZnO-based ultraviolet avalanche photodetectors. J. Phys. D, 46, 305105(2013).
[6] K. K. Tian, C. S. Chu, J. M. Che, H. Shao, J. Q. Kou, Y. H. Zhang, Z. H. Zhang, T. B. Wei. On the polarization self-screening effect in multiple quantum wells for nitride-based near ultraviolet light-emitting diodes. Chin. Opt. Lett., 17, 122301(2019).
[7] Z. G. Shao, D. J. Chen, Y. L. Liu, H. Lu, R. Zhang, Y. D. Zheng, L. Li, K. X. Dong. Significant performance improvement in AlGaN solar-blind avalanche photodiodes by exploiting the built-in polarization electric field. IEEE J. Sel. Top. Quantum Electron., 20, 3803306(2014).
[8] E. Monroy, F. Calle, J. A. Garrido, P. Youinou, E. Muñoz, F. Omnès, B. Beaumont, P. Gibart. Si-doped AlxGa1-xN photoconductive detectors. Semicond. Sci. Technol., 14, 685(1999).
[9] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, M. Umeno. Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain. Jpn. J. Appl. Phys., 40, L505(2001).
[10] S. Walde, M. Brendel, U. Zeimer, F. Brunner, S. Hagedorn, M. Weyers. Impact of open-core threading dislocations on the performance of AlGaN metal-semiconductor-metal photodetectors. J. Appl. Phys., 123, 161551(2018).
[11] F. Xie, H. Lu, D. J. Chen, P. Han, R. Zhang, Y. D. Zheng, L. Li, W. H. Jiang, C. Chen. Large-area solar-blind AlGaN-based MSM photodetectors with ultra-low dark current. Electron. Lett., 47, 930(2011).
[12] O. Katz, V. Garber, B. Meyler, G. Bahir, J. Salzman. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett., 79, 1417(2001).
[13] Y. Xu, X. H. Chen, D. Zhou, F. F. Ren, J. J. Zhou, S. Bai, H. Lu, S. Gu, R. Zhang, Y. D. Zheng, J. D. Ye. Carrier transport and gain mechanisms in β–Ga2O3-based metal–semiconductor–metal solar-blind Schottky photodetectors. IEEE Trans. Electron Devices, 66, 2276(2019).
[14] H. Srour, J. P. Salvestrini, A. Ahaitouf, S. Gautier, T. Moudakir, B. Assouar, M. Abarkan, S. Hamady, A. Ougazzaden. Solar blind metal-semiconductor-metal ultraviolet photodetectors using quasi-alloy of BGaN/GaN superlattices. Appl. Phys. Lett., 99, 221101(2011).
[15] O. Katz, G. Bahir, J. Salzman. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett., 84, 4092(2004).
[16] D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, G. Q. Miao, H. Jiang. Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett., 98, 1541(2011).
[17] P. K. Rao, B. Park, S. T. Lee, Y. K. Noh, M. D. Kim, J. E. Oh. Analysis of leakage current mechanisms in Pt/Au Schottky contact on Ga-polarity GaN by Frenkel–Poole emission and deep level studies. J. Appl. Phys., 110, 013716(2011).
[18] B. S. Simpkins, E. T. Yu, P. Waltereit, J. S. Speck. Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. J. Appl. Phys., 94, 1448(2003).
[19] S. Rathkanthiwar, A. Kalra, S. V. Solanke, N. Mohta, R. Muralidharan, S. Raghavan, D. N. Nath. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J. Appl. Phys., 121, 164502(2017).
[20] E. Monroy, F. Calle, E. Munoz, F. Omnès, B. Beaumont, P. Gibart. Visible-blindness in photoconductive and photovoltaic AlGaN ultraviolet detectors. J. Electron. Mater., 28, 240(1999).
[21] N. Youngblood, C. Chen, S. J. Koester, M. Li. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon., 9, 247(2015).
[22] X. K. Zhou, D. Z. Yang, D. G. Ma, A. Vadim, T. Ahamad, S. M. Alshehri. Ultrahigh gain polymer photodetectors with spectral response from UV to near‐infrared using ZnO nanoparticles as anode interfacial layer. Adv. Funct. Mater., 26, 6619(2016).
[23] H. Zhang, E. J. Miller, E. T. Yu. Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy. J. Appl. Phys., 99, 023703(2006).
[24] F. C. Chiu. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng., 2014, 578168(2014).
[25] E. Arslan, S. Buetuen, E. Ozbay. Leakage current by Frenkel–Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures. Appl. Phy. Lett., 94, 142106(2009).
[26] J. R. Yeargan, H. L. Taylor. The Poole–Frenkel effect with compensation present. J. Appl. Phys., 39, 5600(1968).
[27] V. W. L. Chin, T. L. Tansley, T. Osotchan. Electron mobilities in gallium, indium, and aluminum nitrides. J. Appl. Phys., 75, 7365(1994).
[28] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter, 14, 3399(2002).

Set citation alerts for the article
Please enter your email address