
- Chinese Optics Letters
- Vol. 20, Issue 2, 021204 (2022)
Abstract
1. Introduction
Optical frequency combs (OFCs) emit optical pulse trains with millions of well-defined, mutually coherent, perfectly spaced comb modes[
Typically, noise at repetition rate (
For
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Besides radio frequency references and optical references, kilometer-long fiber delay lines are also proved to be reliable references for short-term stability enhancement in OFCs recently[
The target OFC modes’ frequency noise detection and stabilization are based on the delayed self-heterodyne (DSH) method, which is a state-of-the-art technique in CW lasers’ frequency noise detection and suppression. Procedures for comb modes’ frequency noise reduction using DSH are as follows. A bunch of comb modes (centered at
Figure 1.Principle of comb mode noise detection and repetition rate noise detection based on DSH method. AFI, asymmetric fiber interferometer.
Repetition rate stabilization of the target OFC requires the participation of two separated bunches of comb modes, e.g.,
2. Comb Modes at 1566 nm Are Stabilized to a Fiber Delay Line, and frep Is Stabilized to a Signal Generator
Our first stabilization scheme is to phase lock the repetition rate of the OFC to a signal generator, which is referenced by a rubidium microwave atomic clock. Meanwhile, 1566 nm comb modes are phase locked to the fiber delay line. The mode-locked laser under stabilization is a home-built Er-fiber mode-locked laser with 205 MHz repetition rate. As shown in Fig. 2(a), the optical pulses from the laser are detected by a high-speed photodiode (Electro-Optics Technology, ET-3000A). As a result, the repetition rate’s fifth harmonic is detected and filtered out by a band pass filter (
Figure 2.Three experimental schemes of the fiber-delay-line-referenced OFCs. PD, photodetector; BPF, band-pass filter; SG, signal generator; AFI, asymmetric fiber interferometer.
To evaluate the noise performance of the fully stabilized OFC, out-of-loop phase noise measurement is conducted. In this case, we beat a certain comb mode in the OFC with a commercial 1542 nm CW laser (Stable Laser Systems). The typical linewidth of the CW laser is 1 Hz. Since the reference CW laser has negligible noise compared to stabilized OFC, the phase noise and Allan deviation of the resulting beat signal (
Figure 3.(a) Frequency stability and (b) out-of-loop phase noise PSD of 1542 nm comb mode using scheme (i).
3. Comb Modes at 1566 nm and frep Are Stabilized to a Fiber Delay Line
The second stabilization scheme is to phase lock both
After the close of two phase-locked loops, the out-of-loop measurement of
Figure 4.(a) Frequency stability and (b) out-of-loop phase noise PSD of 1542 nm comb mode using scheme (ii).
4. Comb Modes at 1526 nm and 1566 nm Are Stabilized to a Fiber Delay Line
The third stabilization scheme is inspired by the phase locking scheme from Ref. [24], where both 1526 nm and 1566 nm comb modes are stabilized to the fiber delay line, as illustrated in Fig. 2(c). The error signal from the 1566 nm heterodyne beat is fed back upon the extra-cavity AOFS through a PID servo for
Figure 5.(a) Frequency stability and (b) out-of-loop phase noise PSD of 1542 nm comb mode using scheme (iii).
To summarize, we compared three distinct stabilization schemes using a fiber delay line as a reference: (i) 1566 nm comb modes are stabilized to a fiber delay line and the repetition rate is stabilized to a signal generator; (ii) 1566 nm comb modes and repetition rate are stabilized to a fiber delay line; (iii) 1526 nm and 1566 nm comb modes are stabilized to a fiber delay line. The short-term stability of the OFCs stabilized by these schemes is obviously enhanced, down to the
Stabilization Scheme | Lowest Allan Deviation | Integrated Phase Noise (from 5 MHz to 100 Hz) (rad) |
---|---|---|
(i) | 7.7 | |
(ii) | 3.7 | |
(iii) | 1.5 |
Table 1. Noise Performance Comparison of Three Stabilization Schemes
References
[1] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb. Comms. Phys., 2, 153(2019).
[2] M. Giunta, M. Fischer, W. Hänsel, T. Steinmetz, M. Lessing, S. Holzberger, C. Cleff, T. W. Hänsch, M. Mei, R. Holzwarth. 20 years and 20 decimal digits: a journey with optical frequency combs. IEEE Photon. Technol. Lett., 31, 1898(2019).
[3] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics, 8, 465(2016).
[4] H. Tian, Y. Song, M. Hu. Noise measurement and reduction in mode-locked lasers: fundamentals for low-noise optical frequency combs. Appl. Sci., 11, 7650(2021).
[5] W. Xia, X. Chen. Recent developments in fiber-based optical frequency comb and its applications. Meas. Sci. Technol., 27, 041001(2016).
[6] Y. Chang, T. Jiang, Z. Zhang, A. Wang. All-fiber Yb: fiber frequency comb. Chin. Opt. Lett., 17, 053201(2019).
[7] G. Yang, H. Shi, Y. Yao, H. Yu, Y. Jiang, A. Bartels, L. Ma. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser. Chin. Opt. Lett., 19, 121405(2021).
[8] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett., 84, 5102(2000).
[9] M. Giunta, W. Hänsel, M. Fischer, M. Lezius, T. Udem, R. Holzwarth. Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place. Nat. Photonics, 14, 44(2019).
[10] L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, P. De Natale. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun., 3, 1040(2012).
[11] T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, S. A. Diddams. Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser Photonics Rev., 10, 780(2016).
[12] H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, M. Hu. Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement. Nanotechnol. Precis. Eng., 1, 205(2018).
[13] W. Kim, J. Jang, S. Han, S. Kim, J. S. Oh, B. S. Kim, Y.-J. Kim, S.-W. Kim. Absolute laser ranging by time-of-flight measurement of ultrashort light pulses [Invited]. J. Opt. Soc. Am. A, 37, B27(2020).
[14] Y. Li, Y. Cai, R. Li, H. Shi, H. Tian, M. He, Y. Song, M. Hu. Large-scale absolute distance measurement with dual free-running all-polarization-maintaining femtosecond fiber lasers. Chin. Opt. Lett., 17, 091202(2019).
[15] I. Coddington, N. Newbury, W. C. Swann. Dual-comb spectroscopy. Optica, 3, 414(2016).
[16] R. Liao, H. Tian, W. Liu, R. Li, Y. Song, M. Hu. Dual-comb generation from a single laser source: principles and spectroscopic applications towards mid-IR: a review. J. Phys. Photonics, 2, 042006(2020).
[17] T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann. Frequency metrology with a turnkey all-fiber system. Opt. Lett., 29, 2467(2004).
[18] J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, G. Santarelli. Ultra-low-noise microwave extraction from fiber-based optical frequency comb. Opt. Lett., 34, 3707(2009).
[19] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics, 5, 425(2011).
[20] L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, I. Coddington. Invited article: a compact optically coherent fiber frequency comb. Rev. Sci. Instrum., 86, 081301(2015).
[21] M. Endo, T. D. Shoji, T. R. Schibli. Ultralow noise optical frequency combs. IEEE J. Sel. Top. Quantum Electron., 24, 1102413(2018).
[22] G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, A. Leitenstorfer. All-passive phase locking of a compact Er:fiber laser system. Opt. Lett., 36, 540(2011).
[23] S. Okubo, A. Onae, K. Nakamura, T. Udem, H. Inaba. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica, 5, 188(2018).
[24] I. Coddington, W. C. Swann, N. R. Newbury. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett., 100, 013902(2008).
[25] D. Kwon, C. Jeon, J. Shin, M. Heo, S. E. Park, Y. Song, J. Kim. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep., 7, 40917(2017).
[26] D. Kwon, I. Jeon, W. Lee, M. Heo, J. Kim. Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform. Sci. Adv., 6, eaax4457(2020).
[27] M. Wada, F. Hong, H. Inaba. Frequency noise measurement and its uncertainty estimation of an optical frequency comb using a delay line interferometer. Meas. Sci. Technol., 31, 125012(2020).
[28] H. Tian, F. Meng, K. Wang, B. Lin, S. Cao, Z. Fang, Y. Song, M. Hu. Optical frequency comb stabilized to a fiber delay line. Appl. Phys. Lett., 119, 121106(2021).
[29] H. Tian, W. Yang, D. Kwon, R. Li, Y. Zhao, J. Kim, Y. Song, M. Hu. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Opt. Express, 28, 9232(2020).
[30] D. Kwon, J. Kim. All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1s. Opt. Lett., 42, 5186(2017).

Set citation alerts for the article
Please enter your email address