
- Photonics Research
- Vol. 9, Issue 7, 1272 (2021)
Abstract
1. INTRODUCTION
High-efficient optical nonlinear processes based on high-quality (
However, ChGs are believed to be unstable and can be easily oxidized. Previously reported ChG MRs usually showed a high level of thermal and light-induced instabilities, which decrease the robustness and efficiency of intracavity OPO [20]. In particular, as-deposited ChG films prepared by thermal evaporation typically contain a lot of homopolar bonds, voids, and subphases compared with bulk glasses. For instance, homopolar As-As bonds in ChG film will easily break and be reconstructed with oxygen when heated or being exposed to lasers in milliwatts [20]. The transformation of such bonds will then lead to the change of the refractive index (RI) and reduce stability of ChG film, which is detrimental to OPO [20–22]. As a solution, the thermal annealing process at a temperature close to
Generally, the OPO generation in MRs depends on three aspects: 1) the nonlinear figure of merit [FOM,
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
To address these issues, as shown in Fig. 1, we introduce an
Figure 1.(a) Schematic of the improved
2. EXPERIMENT
A. Preparation of High Purity ChG Glasses
High purity elements (99.9999% As and 99.9999% S) were used to prepare the
B. Preparation and Annealing Post-treatment of ChG Film
The
As shown in Fig. 1(a), a power-tunable laser panel with a center wavelength of 532 nm was installed on a screw that could rotate in the deposition chamber. After the film deposition, the laser panel was raised to 5 cm below the film by rotating 90°. Moreover, the ChG wafer loaded on the top of the chamber was rotated with a speed of 20 revolutions/min, and thereby the power densities of the laser panel could be uniform over a full 4 in. diameter wafer. After that, the vacuum was broken, and the wafer was transferred into an atomic layer deposition (ALD) chamber. A passivation layer (
3. RESULTS
A. Improvement of Stability of ChG Film
Figure 2.(a) Composition of
The Raman and RI spectra of the films by light annealing under different laser intensities of light and duration were measured to achieve optimized parameters of the light-annealing process. As shown in Figs. 3(a)–3(d), the rate of
Figure 3.Raman Spectra of
Figure 4.3D AFM scan images of the surface of ChG films: by light annealing under power densities of (a)
B. Reduction of Propagation Loss of ChG Waveguides
Low-loss on-chip ChG photonic devices are critical for nonlinear photonic applications. Typically, the loss sources of planar waveguides are from the surface interactions and material absorptions [27]. For thermally evaporated ChG films, the material absorptions mainly come from the air’s impurity and oxidized homogeneous bonds. According to the optical microscope images shown in Figs. 1(d) and 1(e), it can be found that there are many bright spots on the surface of FILM-D, which are gradually formed in the air, while FILM-L is highly stable and has not been oxidized. To obtain smooth waveguide sidewalls, we optimize the waveguide fabrication process during etching and post-processing to reduce roughness. Typically, standard waveguide fabrication methods for a ChG waveguide include patterning a masking layer using electron-beam lithography (EBL) or photo-lithography (PL) and transferring this pattern into the waveguide device layer using reactive ion etching (RIE) with fluorine etching gas. Trifluoromethane (
Figure 5.(a) Fabrication process for
Moreover, we investigated the chamber pressure, etching gas flow rate (
Summary of the RIE and ICP-RIE Conditions
RIE | ICP | |
---|---|---|
Chemistry | ||
Pressure (mTorr) | 10 | 10 |
RF power (W) | 100 | 10 |
ICP power (W) | 300 |
RIE is used to fabricate waveguides; ICP-RIE is used to remove resist.
C. Design and Fabrication of High-
Figure 6.(a) Simulated dispersion of
Table 3 shows the comparison of different ChG platforms for nonlinear photonics. Here, we use the attenuation-related
D. OPO in the High
Here, we experimentally demonstrate an OPO process in the improved
Figure 7.(a) Schematic of the OPO measurement setup. (b) Measured OPO spectrum for input power of 7 mW (
5. CONCLUSION
An
References
[1] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, J. Wang. Integrated high-
[2] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).
[3] M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, R. Morandotti. Quantum optical microcombs. Nat. Photonics, 13, 170-179(2019).
[4] A. V. Muraviev, V. O. Smolski, Z. E. Loparo, K. L. Vodopyanov. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics, 12, 209-214(2018).
[5] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-
[6] W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).
[7] X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, A. M. Armani. Low-threshold parametric oscillation in organically modified microcavities. Sci. Adv., 4, eaao4507(2018).
[8] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).
[9] H. T. Lin, Y. Song, Y. Z. Huang, D. Kita, S. Deckoff-Jones, K. Q. Wang, L. Li, J. Y. Li, H. Y. Zheng, Z. Q. Luo, H. Z. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, J. J. Hu. Chalcogenide glass-on-graphene photonics. Nat. Photonics, 11, 798-805(2017).
[10] C. R. Petersen, I. Møller, , B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).
[11] L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 8, 643-649(2014).
[12] D.-G. Kim, S. Han, J. Hwang, I. H. Do, D. Jeong, J.-H. Lim, Y.-H. Lee, M. Choi, Y.-H. Lee, D.-Y. Choi, H. Lee. Universal light-guiding geometry for on-chip resonators having extremely high
[13] B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, B. J. Eggleton. Compact Brillouin devices through hybrid integration on silicon. Optica, 4, 847-854(2017).
[14] H. G. Winful, I. V. Kabakova, B. J. Eggleton. Model for distributed feedback Brillouin lasers. Opt. Express, 21, 16191-16199(2013).
[15] T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, B. J. Eggleton. Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing. Sci. Rep., 4, 5032(2014).
[16] S. Xing, D. Grassani, S. Kharitonov, L. Brilland, C. Caillaud, J. Trolès, C.-S. Brès. Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers. Optica, 4, 643-648(2017).
[17] M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, R. Vallee. 3.77 µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Opt. Lett., 39, 2052-2055(2014).
[18] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).
[19] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[20] D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, A. L. Gaeta. Silicon-waveguide-coupled high-
[21] D.-Y. Choi, A. Wade, S. Madden, R. Wang, D. Bulla, B. Luther-Davies. Photo-induced and thermal annealing of chalcogenide films for waveguide fabrication. Phys. Procedia, 48, 196-205(2013).
[22] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).
[23] A. El-Sebaii, S. A. Khan, F. Al-Marzouki, A. Faidah, A. Al-Ghamdi. Role of heat treatment on structural and optical properties of thermally evaporated Ga10Se81Pb9 chalcogenide thin films. J. Lumin., 132, 2082-2087(2012).
[24] B. J. Kim, J. H. Kim, S. H. Hwang, A. S. Budiman, H. Y. Son, K. Y. Byun, N. Tamura, M. Kunz, D. I. Kim, Y. C. Joo. Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Electron. Mater., 41, 712-719(2012).
[25] J. Zhu, M. Zohrabi, K. Bae, T. M. Horning, M. B. Grayson, W. Park, J. T. Gopinath. Nonlinear characterization of silica and chalcogenide microresonators. Optica, 6, 716-722(2019).
[26] Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J. Hu. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Opt. Lett., 41, 3090-3093(2016).
[27] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).
[28] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).
[29] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-
[30] M. R. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, B. Eggleton. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Express, 16, 14938-14944(2008).
[31] B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, B. Luther-Davies, P. Lucas. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation. J. Am. Ceram. Soc., 98, 1389-1392(2015).
[32] J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, A. Melloni. Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength. Opt. Lett., 35, 874-876(2010).
[33] Y. Zhu, L. Wan, Z. Chen, Z. Yang, D. Xia, P. Zeng, J. Song, J. Pan, Y. Feng, M. Zhang. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators. J. Lightwave Technol., 38, 4817-4823(2020).
[34] J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, A. F. Abouraddy. Structured spheres generated by an in-fibre fluid instability. Nature, 487, 463-467(2012).
[35] M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, M. Jazayerifar. Fiber optical parametric amplifiers in optical communication systems. Laser Photon. Rev., 9, 50-74(2015).
[36] S. Madden, D.-Y. Choi, D. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. Pelusi, B. Eggleton. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express, 15, 14414-14421(2007).
[37] M. J. Collins, A. S. Clark, J. He, D.-Y. Choi, R. J. Williams, A. C. Judge, S. J. Madden, M. J. Withford, M. Steel, B. Luther-Davies, C. L. Xiong, B. J. Eggleton. Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. Opt. Lett., 37, 3393-3395(2012).
[38] X. Gai, S. Madden, D. Y. Choi, D. Bulla, B. Luther-Davies. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm. Opt. Express, 18, 18866-18874(2010).
[39] Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photon. Res., 6, 506-510(2018).
[40] B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, Y. Xu. High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. J. Am. Ceram. Soc., 99, 2565-2568(2016).
[41] Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, B. Luther-Davies. 1.8-10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Opt. Lett., 40, 1081-1084(2015).

Set citation alerts for the article
Please enter your email address