
- Chinese Optics Letters
- Vol. 20, Issue 12, 121601 (2022)
Abstract
1. Introduction
Inorganic scintillation crystals are widely used in high-energy particle detection, medical imaging, nuclear physics, and other fields[
Ytterbium-doped yttrium aluminum garnet (
Besides, Yb:YAG is also a very important inorganic scintillator since it possesses an ultrafast decay time (0.41 ns excited by 266 nm pulsed laser)[
The study of Yb:YAG scintillators started in 1997, when Raghavan et al. reported that 15% (mass fraction) Yb can be used to detect low-energy solar neutrinos[
Since Yb:YAG features extremely low LY in comparison with commercial scintillators like bismuth germanium oxide (BGO) and cesium-doped lutetium-yttrium oxyorthosilicate (Ce:LYSO), it is only suitable in the application of high-intensity pulsed gamma ray measurement. In previous studies, Chen et al.[
Preliminary studies have shown that doping of host elements can modulate the crystal scintillation properties. The Ce:LuAG has better energy resolution (
Therefore, in order to regulate the density and explore the relationship between the host atom substitution in the Yb:LuYAG system and spectral properties, we grow the single crystals of
2. Experimental Procedure
Figure 1.Picture of the as-grown crystals for (a) (Yb0.15Lu0.2125Y0.6375)3Al5O12, (b) (Yb0.15Lu0.425Y0.425)3Al5O12, and (c) (Yb0.15Lu0.85)3Al5O12.
Figure 2.Picture of the crystals for (1a), (1b) (Yb0.15Y0.85)3Al5O12, (2a), (2b) (Yb0.15Lu0.2125Y0.6375)3Al5O12, (3a), (3b) (Yb0.15Lu0.425Y0.425)3Al5O12, and (4a), (4b) (Yb0.15Lu0.85)3Al5O12. The samples in first and second rows are before and after annealing, respectively.
The density values of the four samples were measured using the Archimedes method. The optical properties were characterized by a PerkinElmer Lambda 1050 UV/VIS/NIR spectrometer (Massachusetts, USA). The XEL spectra and decay time profiles by pulse laser at 213 nm were recorded by a luminescence spectrometer (Edinburgh Instrument FLS1000, Edinburgh, UK). The X-ray source with Ag target operating at 50 kV and 15 µA was used as an excitation source. The pulse width of the pulse laser at 213 nm is 43.102 ps.
3. Results and Discussion
The density of single crystals for (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 (
Sample | Density ( |
---|---|
4.83 | |
5.40 | |
5.83 | |
6.77 |
Table 1. The Densities of the Single Crystals for (Yb0.15Lu0.85
Transmission spectra as a function of incident wavelength (200–1200 nm) for
Figure 3.Transmittance of the single crystals for (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 (x = 0, 0.25, 0.5, 1).
The
Figure 4 shows the XEL spectra of crystals for
Figure 4.XEL spectra of the single crystals for (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 (x = 0, 0.25, 0.5, 1) at room temperature.
According to Fig. 4, the luminescence intensity of the sample gradually increases with the increase of
The relationship between
Figure 5.Luminescence integral intensity varies with Lu3+ concentration increase.
The
Figure 6.213 nm pulsed laser excited decay time profiles of the single crystals for (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 (x = 0, 0.25, 0.5, 1) at 330 nm and 500 nm.
The decay time values of the single crystals for
Time Constant (ns) | ||
---|---|---|
Crystal | 330 nm | 500 nm |
1.12 | 1.34 | |
1.11 | 1.14 | |
1.04 | 1.02 | |
0.78 | 0.84 |
Table 2. The Decay Time Constants of the Single Crystals for (Yb0.15Lu0.85
Besides, the decay times of the crystals for (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 shorten with the increasing of
Figure 7.Decay time of the single crystals for (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 (x = 0, 0.25, 0.5, 1) at 330 nm with Lu3+ concentration increase.
4. Conclusions
The
References
[1] M. Nikl. Scintillation detectors for X-rays. Meas. Sci. Technol., 17, R37(2006).
[2] M. Œwirkowicz, M. Skórczakowski, J. Jabczynski, A. Bajor, E. Tymicki. Investigation of structural, optical and lasing properties of YAG:Yb single crystals. Opto-Electron. Rev., 13, 213(2005).
[3] L. Johnson, J. Geusic, L. Van Uitert. Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet. Appl. Phys. Lett., 7, 127(1965).
[4] Y. Zhao, Q. Wang, L. Meng, Y. Yao, S. Liu, N. Cui, L. Su, L. Zheng, H. Zhang, Y. Zhang. Anisotropy of the thermal and laser output properties in Yb, Nd:Sc2SiO5 crystal. Opt. Lett., 46, 5(2021).
[5] Z. Li, D. Tang, J. Zhang, M. Hu, Y. Chen. Experimental research on time response of two kinds of Yb3+-doped scintillators emission spectra excited by laser. At. Energy Sci. Technol., 46, 608(2012).
[6] K. Zhang, X. Ouyang, Z. Song, H. Han, Y. Zuo, X. Guan, X. Tan, Z. Zhang, J. Liu. An ideal scintillator–ZnO:Sc for sub-nanosecond pulsed radiation detection. Nucl. Instrum., 756, 14(2014).
[7] X. Chen, Z. Zhang, K. Zhang, X. Guan, X. Weng, H. Han. Study on the time response of a barium fluoride scintillation detector for fast pulse radiation detection. IEEE Trans. Nucl. Sci., 67, 1893(2020).
[8] M. Hu, Z. Li, Y. Fu, D. Tang, J. Zhang, J. Liu, R. Li, L. Chen, Y. Huang. The measurement of increase Yb:YAG scintillation detector pulse output electric charge. Nucl. Electron. Detect. Technol., 37, 647(2017).
[9] K. Zhang, H. Hu, Z. Song, H. Han, X. Guan, Y. Lu, X. Chen, Y. Yi. Experiment investigation on pulsed gamma-ray fluence rate effect on Yb-doped yttrium aluminum garnet scintillator. Rev. Sci. Instrum., 92, 063304(2021).
[10] R. S. Raghavan. New prospects for real-time spectroscopy of low energy electron neutrinos from the sun. Phys. Rev. Lett., 78, 3618(1997).
[11] L. van Pieterson, M. Heeroma, E. De Heer, A. Meijerink. Charge transfer luminescence of Yb3+. J. Lumines., 91, 177(2000).
[12] N. Guerassimova, N. Garnier, C. Dujardin, A. G. Petrosyan, C. Pedrini. X-ray excited charge transfer luminescence of ytterbium-containing aluminium garnets. Chem. Phys. Lett., 339, 197(2001).
[13] P. Antonini, S. Belogurov, G. Bressi, G. Carugno, P. Santilli. Scintillation properties of Yb-doped yttrium-aluminum garnets. Nucl. Instrum., 488, 591(2002).
[14] W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, P. Limsuwan. Comparative studies of Lu3Al5O12:Ce and Y3Al5O12:Ce scintillators for gamma-ray detection. Phys. Status Solidi A, 206, 2599(2009).
[15] C. Wanarak, A. Phunpueok, W. Chewpraditkul. Scintillation response of Lu1.95Y0.05SiO5:Ce and Y2SiO5:Ce single crystal scintillators. Nucl. Instrum., 286, 72(2012).
[16] S. Belogurov, G. Bressi, G. Carugno, Y. Grishkin. Properties of Yb-doped scintillators: YAG, YAP, LuAG. Nucl. Instrum., 516, 58(2004).
[17] K. Mori. Transient color-centers caused by UV light irradiation in yttrium aluminum garnet crystals. Phys. Status Solidi A, 42, 375(1977).
[18] D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, A. Hofstaetter. High quantum efficiency YbAG-crystals. J. Lumines., 125, 238(2007).
[19] C. Chen, G. Pogatshnik, Y. Chen, M. R. Kokta. Optical and electron-paramagnetic resonance studies of Fe impurities in yttrium aluminum garnet crystals. Phys. Rev. B, 38, 8555(1988).
[20] S. Rydberg, M. Engholm. Charge transfer processes and ultraviolet induced absorption in Yb:YAG single crystal laser materials. J. Appl. Phys., 113, 223510(2013).
[21] K. Li, S. Gan, G. Hong, J. Zhang. Relationship between crystal structure and luminescence properties of (Y0.96-xLnxCe0.04)3Al5O12 (Ln=Gd, La, Lu) phosphors. J. Rare Earths, 25, 692(2007).
[22] A. P. Anantharaman, H. P. Dasari. Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceram. Int., 47, 4367(2021).
[23] M. Nikl, A. Yoshikawa, T. Fukuda. Charge transfer luminescence in Yb3+-containing compounds. Opt. Mater., 26, 545(2004).
[24] Y. Fujimoto, M. Sugiyama, T. Yanagida, S. Wakahara, S. Suzuki, S. Kurosawa, V. Chani, A. Yoshikawa. Comparative study of optical and scintillation properties of Tm3+:YAG, and Tm3+:LuAG single crystals. Opt. Mater., 35, 2023(2013).
[25] M. K. Ashurov, Y. K. Voronko, V. V. Osiko, A. A. Sobol, M. I. Timoshechkin. Spectroscopic study of stoichiometry deviation in crystals with garnet structure. Phys. Status Solidi A, 42, 101(1977).
[26] Y. Zorenko, V. Gorbenko. Growth peculiarities of the R3Al5O12 (R=Lu, Yb, Tb, Eu–Y) single crystalline film phosphors by liquid phase epitaxy. Radiat. Meas., 42, 907(2007).
[27] M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Y. Zorenko, K. Nejezchleb. The antisite Lu-Al defect-related trap in Lu3Al5O12 : Ce single crystal. Phys. Status Solidi B, 242, R119(2005).
[28] C. R. Stanek, K. J. Mcclellan, M. R. Levy, C. Milanese, R. W. Grimes. The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance. Nucl. Instrum., 579, 27(2007).
[29] Y. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhallin, V. Kolobanov, D. Spassky. Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues. J. Lumines., 114, 85(2005).
[30] Y. Kuwano, K. Suda, N. Ishizawa, T. Yamada. Crystal growth and properties of (Lu, Y)3Al5O12. J. Cryst. Growth, 260, 159(2004).
[31] H. Ogino, A. Yoshikawa, J. H. Lee, M. Nikl, N. Solovieva, T. Fukuda. Growth and scintillation properties of Yb-doped Lu3Al5O12 crystals. J. Cryst. Growth, 253, 314(2003).
[32] M. Nikl, A. Vedda, M. Fasoli, I. Fontana, V. V. Laguta, E. Mihokova, J. Pejchal, J. Rosa, K. Nejezchleb. Shallow traps and radiative recombination processes in Lu3Al5O12: Ce single crystal scintillator. Phys. Rev. B, 76, 195121(2007).

Set citation alerts for the article
Please enter your email address