
- Chinese Optics Letters
- Vol. 20, Issue 8, 081301 (2022)
Abstract
1. Introduction
The silicon-on-insulator (SOI) platform is the most promising route toward seamlessly realizing optical devices in chip-level communication circuits[
Benefiting from the large nonlinearity of Si, stimulated Raman scattering (SRS) is used to achieve tunable light amplification. In particular, SOI wire waveguides have performed experimentally to prove the validity of signal amplification, modulation, and frequency conversion[
Another imperative limitation of SOI devices is the high thermo-optic (TO) coefficient of Si (
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Here, we conduct a profound analysis of multi-channel Raman-mediated pulse amplification in a Si photonic system, which also owns remarkable temperature insensitive demultiplexing characteristics. Importantly, the amplification of desired Stokes light provides a potential avenue to deal with the excessive attenuation of optical signals. Meanwhile, we also pay loads of attention to compensate the wavelength drift, which is raised by heat accumulation or circumstance variation. By designing the asymmetric waveguide arm in the MZI, it is possible to effectively reduce the sensitivity of the entire optical amplification system to ambient temperature up to 400 K. In addition, the principle of an optical half-band filter is used to restrain the crosstalk of adjacent channels and further improve the thermal tolerance[
2. Result and Discussion
Our multi-channel light amplification system is depicted in Fig. 1. The Si wire waveguide is buried in
Figure 1.Multi-channel Si photonic system. CHi represents the corresponding pump light λi and Stokes light λsi. Si wire waveguide height h = 220 nm, width w = 450 nm.
First, we calculate the dispersion coefficients and mode profile of the Si waveguide by using the finite element method (FEM). Figure 2 presents the modal dispersion in the C band. The materials refractive index
Figure 2.Dispersion coefficients of wire waveguides. (a) Propagation constant. (b) First-order dispersion coefficient. (c) Second-order dispersion coefficient. (d) Group refractive index.
Here,
In Eq. (11),
Here,
Four Stokes lights are choired to the wavelength of
Figure 3.Four-channel SRS effect. (a) The propagation of pump lights. (b) The propagation of Stokes lights. (c) Input (dash line) and output (solid line) profiles of CH1 pump pulse. (d) Input (dash line) and output (solid line) profiles of CH1 Stokes pulse.
There is a notable drift in the frequency domain where the outputs are diverse from the original designed wavelength. The actual emitted wavelengths of the wire waveguide are 1549.55, 1550.30, 1551.10, and 1551.85 nm, respectively. Therefore, the operated wavelengths of the demultiplexer are modified correspondingly. The shift toward a higher Raman induced frequency occurs when the input pulse is relatively short, and its high frequency components can pump the low frequency components by SRS, thus the energy of the pulse is transferring to the red side. When the pulse spectrum shifts happen through intra-pulse Raman scattering, the pulse propagation is slowed down because of the decreased GV at longer wavelengths in the
Figure 4 shows the 3D light propagation result, where the coherent generation of the Raman signal is clearly demonstrated. As the intrinsic loss is set to 1 dB/cm, the power in the Raman pulse increases to a threshold value at a 0.7 mm distance, and then the interaction with the pump pulse turns strong enough to change its profile, as depicted in Fig. 4(a). Meanwhile, the Raman pulse rises rapidly from a weak signal, as shown in Fig. 4(b). Finally, the outputs of the amplified four channels Stokes lights are displayed in Fig. 4(c). These two curves overlap almost completely, indicating that the thermal stability of Raman amplification process needs no more optimization.
Figure 4.Transmission in the wire waveguide. (a) The propagation of 1435.68 nm pump pulse. (b) The propagation of 1551.60 nm Stokes pulse. (c) The transmission of the enlarged four-channel Stokes lights at 300 K and 400 K, respectively.
In fact, the high TO coefficient of Si does critically disturb the system performance because of the thermal sensitivity of demultiplexers. The common architecture of the two stages MZIs demultiplexer is shown in Fig. 5(a). The corresponding free spectral ranges (FSRs) of the first and second stage MZIs are set to be 1.54 nm and 3.08 nm, respectively. The FSR of the individual MZI is inversely proportional to the delay length:
Figure 5.Temperature sensitive de-multiplexer. (a) The two-stage cascaded Mach–Zehnder wavelength filter. (b) Electric field intensity profile for the DC at a wavelength of 1.55 µm. (c) Transmission of de-multiplexer displayed in (a) at 300 K. (d) Transmission of de-multiplexer displayed in (a) at 400 K.
The power coupling coefficient (
Figure 6.Transmission of the enlarged Stokes light through the four-channel de-multiplexer. (a) CH1 output port. (b) CH2 output port. (c) CH3 output port. (d) CH4 output port.
To reduce the impact of temperature, we introduce both the optical half-band filter architecture and asymmetric waveguide width in cascaded MZIs. Figure 7(a) shows a cascaded Mach–Zehnder-like lattice unit, which is abstractly simplified as a block in Fig. 7(b). Chebyshev half-band filters possess a wider 1 dB bandwidth, which can help effectively suppress the change in transmission signals when the wavelength shift has occurred. A synthesis algorithm based on MZIs for arbitrary FIR filters is developed in Ref. [14]. The key parameters
0.79 | 0.49 | 0.94 | 0.06 | 0.50 | 0 | 0 |
Table 1. Chebyshev Optical Half-Band Filters
Figure 7.Proposed temperature insensitive flat pass-band filter. (a) Single cell of the cascaded Mach–Zehnder-like lattice filters. (b) The anti-thermal four-channel wavelength splitting filters.
At 300 K, the DC coupling length corresponding to the power coupling coefficient in Table 1 is 13.9, 9.1, 17.4, 1.35, and 9.4 µm in turn. To be rigorous, we also consider the performance of DCs at 400 K. Figure 7(a) shows a design of combining wide and narrow waveguides in different arms. The two arms of the MZIs have a different TO coefficient. By selecting appropriate arm lengths, the temperature dependence of both the arms can be made to cancel each other out. Three of the same blocks are cascaded for restraining the crosstalk, as shown in Fig. 7(b). The thermal sensitivity of a standard MZI can be expressed as
The wavelength shift versus temperature defined by Eq. (16) should be brought to zero. The TO coefficient and
Figure 8.(a) Simulated TO coefficients and effective refractive index. (b) Transmission of the designed temperature insensitive flat pass-band filter.
The results at different channels are presented in Fig. 9. One remarkable finding is that the transmission peaks are precisely located at the proposed wavelengths of 1549.55, 1550.30, 1551.10, and 1551.85 nm, respectively. A robust behavior is demonstrated by the almost coincident curves at 300 K and 400 K. At the central wavelength of each channel, this system perfectly avoids the impact of temperature by the flat band response and thermal insensitivity of the demultiplexer. In Figs. 9(b) and 9(c), the max crosstalk is
Figure 9.Transmission of the enlarged Stokes lights through the anti-thermal four-channel de-multiplexer. (a) CH1 output port. (b) CH2 output port. (c) CH3 output port. (d) CH4 output port.
3. Conclusion
We demonstrate a theoretical computation of four-channel Raman-mediated light amplification in Si. Based on the Raman effects, we designed a thermal insensitive light amplification system on an SOI platform. All relative parameters are defined and shown in this article. The deliberate constructed system, which includes the architecture of a Chebyshev optical half-band filter and different waveguide widths in two arms, shows strong reliability, even the ambient variation is large. The highlight advantage of this system is the cost-effective passive compensation of wavelength shift without a complex fabrication process and energy-intensive active tuning. By increasing the output ports of the demultiplexer, this on-chip optical amplification system can scale up, which can be widely used for large-scale on-chip circuits as signal amplifiers, modulators, or photonic signal processors.
References
[1] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 12(2021).
[2] P. Zhou, F. Zhang, Q. Guo, S. Pan. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser. Opt. Express, 24, 18460(2016).
[3] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany. Integrated microwave photonics. Laser Photonics Rev., 7, 506(2013).
[4] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R. T. Chen. Recent advances in silicon-based passive and active optical interconnects. Opt. Express, 23, 2487(2015).
[5] D. Yang, Y. Huang, T. Liu, X. Ma, X. Ren. Bias-free operational monolithic symmetric-connected photodiode array. Chin. Opt. Lett., 18, 012501(2018).
[6] A. Yariv, X. Sun. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis. Opt. Express, 15, 9147(2007).
[7] J. Zhang, B. Haq, J. O’Callaghan, G. Angieska, R. Gunther. Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt. Express, 26, 8821(2018).
[8] A. D. Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, G. Roelkens. Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters. Opt. Express, 24, 13754(2016).
[9] D. Jonathan, B. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev., 3, 368(2011).
[10] P. Zhou, S. Wang, X. Wang, Y. He, W. Kan. High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser. Opt. Express, 26, 16689(2018).
[11] T. Jiang, J. You, Z. Tao, Y. Luo, X. Cheng. BER evaluation in a multi-channel graphene-silicon photonic crystal hybrid interconnect: a study of fast- and slow-light effect. Opt. Express, 28, 17286(2020).
[12] R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express, 12, 3713(2004).
[13] P. Qi, Y. Luo, B. Shi, W. Li, D. Liu, L. Zheng, Z. Liu, Y. Hou, Z. Fang. Phonon scattering and exciton localization: molding exciton flux in two-dimensional disorder energy landscape. eLight, 1, 12(2021).
[14] S. Dwivedi, H. D’Heer, W. Bogaerts. Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters. IEEE Photonics Technol. Lett., 27, 871(2015).
[15] K. Zheng, W. Zou, L. Yu, N. Qian, J. Chen. Stability optimization of channel-interleaved photonic analog-to-digital converter by extracting of dual-output photonic demultiplexing. Chin. Opt. Lett., 18, 012502(2020).
[16] T. Jie, P. Dumon, W. Bogaerts, H. Zhang, R. Baets. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 17, 14627(2009).
[17] F. Horst, W. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652(2013).
[18] T. Balster, F. Tautz, V. Polyakov, H. Ibach, S. Sloboshanin, R. Ottking, J. A. Schaefer. Strong dispersion of the surface optical phonon of silicon carbide in the near vicinity of the surface Brillouin zone center. Surf. Sci., 600, 2886(2006).
[19] S. Moghaddam, S. K. O’Leary. A Sellmeier extended empirical model for the spectral dependence of the refractive index applied to the case of thin-film silicon and some of its more common alloys. J. Mater. Sci. Mater. Electron., 31, 212(2020).
[20] B. J. Frey, D. B. Leviton, T. J. Madison. Temperature dependent refractive index of silicon and germanium. Proc. SPIE, 6273, 1235(2006).
[21] G. Ghosh, M. Endo. Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J. Light. Technol., 12, 1338(1994).
[22] J. Santhanam, G. P. Agrawal. Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun., 222, 413(2003).
[23] L. Ma, J. Li, Z. Liu, Y. Zhang, N. Zhang, S. Zheng. Intelligent algorithms: new avenues for designing nanophotonic devices. Chin. Opt. Lett., 19, 011301(2021).
[24] B. Bai, L. Pei, J. Zheng, T. Ning, J. Li. Ultra-short plasmonic polarization beam splitter-rotator using a bent directional coupler. Chin. Opt. Lett., 18, 041301(2020).

Set citation alerts for the article
Please enter your email address