
- Chinese Optics Letters
- Vol. 19, Issue 9, 093201 (2021)
Abstract
1. Introduction
Femtosecond laser pulses operated at several kilohertz repetition rate with hundreds of microjoules pulse energy have attracted great interest in the fields of material process[
In this Letter, an 8 kHz Nd:
2. Experimental Setup
The layout of the experimental setup is shown in Fig. 1. The seed is a passively mode-locked Nd:
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Figure 1.Experimental setup: Nd:
Figure 2.Characterization of the Nd:
3. Experimental Results
The laser power after the lens L4 is 1.37 W when the incident power is 1.65 W, corresponding to a transmission of 83%. The loss mainly comes from the 222 passes through the end faces of the fused silica and 110 times reflection on CM1 and CM2. For example, we assume that the reflectivity of CM1 and CM2 and transmittance of the fused silica are 99.95%, and then the transmittance can be estimated to be
Figure 3.Characterization of the laser pulses after the compression unit. (a) Spectrum after MPC device; inset: calculated FTL pulse duration. (b) Intensity autocorrelation trace after compressor (black) and convolution of the FTL pulse (red).
Figure 4.Long-term power stability of the (a) Nd:
The long-term power stability is measured, as shown in Fig. 4. Within 2 h, one measurement point is recorded per second, and the RMS stability before and after the MPC is 0.61% and 0.66%, respectively, which indicates that the laser power drift is little affected by the spectral broadening process.
The beam quality (
Figure 5.Beam quality (M2) (a) before and (b) after the MPC device.
4. Conclusion
In summary, the spectral bandwidth of an 8 kHz Nd:
References
[1] B. Le Drogoff, F. Vidal, S. Laville, M. Chaker, T. Johnston, O. Barthelemy, J. Margot, M. Sabsabi. Laser-ablated volume and depth as a function of pulse duration in aluminum targets. Appl. Opt., 44, 278(2005).
[2] M. Liebel, C. Schnedermann, T. Wende, P. Kukura. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A, 119, 9506(2015).
[3] I. B. Mukhin, M. R. Volkov, I. A. Vikulov, E. A. Perevezentsev, O. V. Palashov. Ytterbium laser system for studying parametric amplification of femtosecond pulses with a centre wavelength of similar to 2 µm. Quantum Electron., 50, 321(2020).
[4] D. Yan, B. Liu, Y. Chu, H. Song, L. Chai, M. Hu, C. Wang. Hybrid femtosecond laser system based on a Yb:KGW regenerative amplifier for NP polarization. Chin. Opt. Lett., 17, 041404(2019).
[5] H. Liu, G. Wang, J. Jiang, W. Tian, D. Zhang, H. Han, S. Fang, J. Zhu, Z. Wei. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti:sapphire oscillator. Chin. Opt. Lett., 18, 071402(2020).
[6] Y. M. Ma, F. Meng, Y. Wang, A. Wang, Z. Zhang. High contrast linking six lasers to a 1 GHz Yb:fiber laser frequency comb. Chin. Opt. Lett., 17, 041402(2019).
[7] F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gerome, T. Sudmeyer, F. Benabid, U. Keller. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression. Opt. Lett., 39, 6843(2014).
[8] S. Hadrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, A. Tunnermann. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light-Sci. Appl., 4, e320(2015).
[9] J. Schulte, T. Sartorius, J. Weitenberg, A. Vernaleken, P. Russbueldt. Nonlinear pulse compression in a multi-pass cell. Opt. Lett., 41, 4511(2016).
[10] M. Hanna, X. Delen, L. Lavenu, F. Guichard, Y. Zaouter, F. Druon, P. Georges. Nonlinear temporal compression in multipass cells: theory. J. Opt. Soc. Am. B, 34, 1340(2017).
[11] J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H. D. Hoffmann, T. Udem, P. Russbuldt, T. W. Hansch. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power. Opt. Express, 25, 20502(2017).
[12] K. Fritsch, M. Poetzlberger, V. Pervak, J. Brons, O. Pronin. All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett., 43, 4643(2018).
[13] E. Vicentini, Y. C. Wang, D. Gatti, A. Gambetta, P. Laporta, G. Galzerano, K. Curtis, K. McEwan, C. R. Howle, N. Coluccelli. Nonlinear pulse compression to 22 fs at 15.6 µJ by an all-solid-state multipass approach. Opt. Express, 28, 4541(2020).
[14] L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, X. Delen, M. Hanna, E. Mottay, P. Georges. Nonlinear pulse compression based on a gas-filled multipass cell. Opt. Lett., 43, 2252(2018).
[15] M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, T. Nubbemeyer. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett., 43, 5877(2018).
[16] P. Balla, A. B. Wahid, I. Sytcevich, C. Guo, A. L. Viotti, L. Silletti, A. Cartella, S. Alisauskas, H. Tavakol, U. Grosse-Wortmann, A. Schonberg, M. Seidel, A. Trabattoni, B. Manschwetus, T. Lang, F. Calegari, A. Couairon, A. L’Huillier, C. L. Arnold, I. Hartl, C. M. Heyl. Postcompression of picosecond pulses into the few-cycle regime. Opt. Lett., 45, 2572(2020).
[17] J. X. Liu, W. Wang, Z. H. Wang, Z. G. Lv, Z. Y. Zhang, Z. Y. Wei. Diode-pumped high energy and high average power all-solid-state picosecond amplifier systems. Appl. Sci. Basel, 5, 1590(2015).

Set citation alerts for the article
Please enter your email address