
- Chinese Optics Letters
- Vol. 19, Issue 8, 081902 (2021)
Abstract
1. Introduction
Femtosecond fiber lasers have been investigated in such fields as coherent tomography, material precision processing/cutting, optical communication, scientific research, and industrial production fields because of their excellent advantages such as compact structure, fast heat dissipation, and strong stability[
In recent years, transition metal oxides (TMOs) have become popular candidates for SAs due to their large nonlinear optical response. Scientists have enhanced the optical properties of TMOs by designing photonic band gap (PBG) structures and bandgap turning[
As a member of TMOs,
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Here, cobalt oxyfluoride (CoOF), as one of the TMOFs, is studied experimentally in the fiber laser. The CoOF SA is prepared by rapid thermal annealing (RTA). The structure of the tapered fiber is selected to enhance the nonlinearity of the SA[
2. Preparation and Characterization of CoOF SAs
CoOF was prepared by the RTA strategy[
The saturable absorption characteristics of SA were measured by the double balance detection method. The NPR-based space mode-locked laser provides a light source with a center wavelength of 1.5 µm. The pulse duration of the NPR laser is about 700 fs. Figure 1 shows the saturation absorption characteristics of CoOF, and the results are fitted by the following formula:
Figure 1.Nonlinear optical transmission of CoOF-SA.
The modulation depth (MD) of the CoOF is as high as 56.79%, indicating that the combination of Co-F and Co-O bonds does help to improve the optical properties of the material. In addition, the non-saturated loss (
3. Experiment
Figure 2 shows a CoOF-based mode-locked fiber laser (MLFL), where the laser cavity includes a laser diode pump, an erbium-doped fiber (EDF) with a length of 0.4 m, an optical coupler (OC), a wavelength division multiplexer (WDM), a polarization controller (PC), an isolator (ISO), and a CoOF SA. The length of the whole ring cavity is 4.06 m. The signal light generated by the pump enters the laser cavity through the WDM and is amplified by the EDF. A small part of the output light from the 80:20 OC provides convenience for real-time signal measurement. The PC and ISO are assembled to adjust the polarization state and ensure the unidirectional transmission of the optical signal, respectively. The CoOF SA, as the main nonlinear modulation device in the cavity, is mainly used for pulse control and shaping. The optical characteristics of the laser are detected by a real-time oscilloscope, a spectrum analyzer, and an RF spectrum analyzer. In addition, the laser output through the OC terminal will be coupled to a power meter to obtain the output power.
Figure 2.Schematic diagram of high-stability MLFL cavity with CoOF SA.
4. Result and Discussion
Before CoOF is transferred to the surface of the microfiber, it is confirmed that mode-locking and Q-switching will not appear by changing the polarization state or increasing the power. After the CoOF SA with the MD of 56.79% is coupled into the ring cavity, the mode-locked pulse is observed at 52 mW by rotating the PC. The mode-locked pulse remains stable after the pump power reaches 630 mW, the output power of obtained mode-locked laser is 20.1 mW, and, in this case, the relevant pulse energy is 0.409 nJ. The calculated optical damage threshold of the SAs is
Figure 3.(a) The pulse sequence. (b) The autocorrelation trace. (c) The spectra. (d) The RF spectrum.
Table 1 demonstrates the performance comparison of MLFLs based on TMOs and some popular TMDs. It is noted that the MD of the CoOF SA is 56.79%, which is the largest among the materials listed in Table 1. Compared with TMOs (
Materials | Modulation Depth (%) | Wavelength (nm) | Pulse Duration (ps) | SNR (dB) | Refs. |
---|---|---|---|---|---|
43.7 | 1958.1 | 1.39 | 46 | [ | |
NiO | 39 | 1568.1 | 0.95 | 43 | [ |
34 | 1979 | 10.29 | 58 | [ | |
ZnO | 2.34 | 1945.45 | 1.395 | 50.5 | [ |
19.48 | 1563.4 | 0.256 | 75 | [ | |
0.8 | 1558 | 1 | 52 | [ | |
11 | 1557 | 0.66 | 65 | [ | |
CoOF | 56.79 | 1562.01 | 0.156 | 92 | This work |
Table 1. Comparison of MLFLs Based on TMOs and TMDs
5. Conclusion
In conclusion, by introducing fluoride functional groups into TMOs, the optical properties of CoOF SA have been improved. With the CoOF SA, the stable mode-locked system at 1562 nm has been delivered; at the same time, the mode-locked pulse sequence with output power of 20 mW, the pulse width of 156 fs, and the SNR greater than 90 dB is obtained, which shows an absolute advantage in similar lasers. The results have shown the effectiveness of CoOF in nonlinear modulation and provided a new feasible scheme for future research of strong stability mode-locked devices. Moreover, this research also shows the potential of CoOF as a broadband electronic material, which will provide a certain reference value for its multi-field application.
References
[1] D. C. Kirsch, S. Chen, R. Sidharthan, Y. Chen, M. Chernysheva. Short-wave IR ultrafast fiber laser systems: current challenges and prospective applications. J. Appl. Phys., 128, 180906(2020).
[2] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831(2003).
[3] T. H. Chen, C. H. Cheng, Y. H. Lin, C. T. Tsai, Y. C. Chi, Z. Q. Luo, G. R. Lin. Optimizing the self-amplitude modulation of different 2-D saturable absorbers for ultrafast mode-locked fiber lasers. IEEE J. Sel. Top. Quantum Electron., 25, 0900310(2019).
[4] P. Hu, Y. Huang, F. F. Liu, Y. Liu, L. P. Guo, X. L. Ge, X. J. Liu. A Q-switched erbium-doped fiber laser based on ZrS2 as a saturable absorber. Chin. Opt. Lett., 17, 080603(2019).
[5] H. G. Gu, Z. P. Qin, G. Q. Xie, T. Hai, P. Yuan, J. G. Ma, L. J. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).
[6] F. Ö. Ilday, F. W. Wise, T. Sosnowski. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Opt. Lett., 27, 1531(2002).
[7] Z. W. He, Y. Zheng, H. Y. Liu, M. K. Li, H. Lu, H. Z. Zhang, Q. L. Feng, D. Mao. Passively Q-switched cylindrical vector laser based on a black phosphorus saturable absorber. Chin. Opt. Lett., 17, 020004(2019).
[8] Z. X. Zhang, J. R. Tian, C. X. Xu, R. Q. Xu, Y. S. Cui, B. H. Zhuang, Y. R. Song. Noise-like pulse with a 690 fs pedestal generated from a nonlinear Yb-doped fiber amplification system. Chin. Opt. Lett., 18, 121403(2020).
[9] X. J. Chen, Y. X. Gao, J. M. Jiang, M. Liu, A. P. Luo, Z. C. Luo, W. C. Xu. High-repetition-rate pulsed fiber laser based on virtually imaged phased array. Chin. Opt. Lett., 18, 071403(2020).
[10] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett., 16, 020004(2018).
[11] G. Sobon, J. Sotor, K. M. Abramski. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Appl. Phys. Lett., 100, 161109(2012).
[12] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, W. C. Xu. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 38, 5212(2013).
[13] W. J. Liu, L. H. Pang, H. N. Han, W. L. Tian, H. Chen, M. Lei, P. G. Yan, Z. Y. Wei. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep., 6, 19997(2016).
[14] L. Yun. Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation. Opt. Express, 25, 32380(2017).
[15] M. Zhang, Q. Wu, F. Zhang, L. L. Chen, X. X. Jin, Y. W. Hu, Z. Zheng, H. Zhang. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).
[16] Y. Chen, H. R. Mu, P. F. Li, S. H. Lin, B. N. Shivananju, Q. L. Bao. Optically driven black phosphorus as a saturable absorber for mode-locked laser pulse generation. Opt. Eng., 55, 081317(2016).
[17] P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, G. Z. Cao. Microfiber-based WS2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express, 5, 479(2015).
[18] W. J. Liu, M. L. Liu, X. M. Liu, X. T. Wang, H. X. Deng, M. Lei, Z. M. Wei, Z. Y. Wei. Recent advances of 2D materials in nonlinear photonics and fiber lasers. Adv. Opt. Mater., 8, 1901631(2020).
[19] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249(2014).
[20] Q. Y. Hu, X. Y. Zhang, Z. J. Liu, P. Li. High-order harmonic mode-locked Yb-doped fiber laser based on a SnSe2 saturable absorber. Opt. Laser Technol., 119, 105639(2019).
[21] Z. P. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photon., 10, 227(2016).
[22] X. S. Zhu, J. C. Wang, P. C. Lau, D. T. Nguyen, R. A. Norwood, N. Peyghambarian. Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles. Appl. Phys. Lett., 97, 093503(2010).
[23] W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, G. E. Jellison, H. N. Lee. Wide bandgap tunability in complex transitionmetal oxides by site-specific substitution. Nat. Commun., 3, 689(2012).
[24] A. Nady, M. H. M. Ahmed, A. A. Latiff, C. H. R. Ooi, S. W. Harun. Femtoseconds soliton mode-locked erbium-doped fiber laser based on nickel oxide nanoparticle saturable absorber. Chin. Opt. Lett., 15, 100602(2017).
[25] M. F. M. Rusdi, A. A. Latiff, M. C. Paul, S. Das, A. Dhar, H. Ahmad, S. W. Harun. Titanium dioxide (TiO2) film as a new saturable absorber for generating mode-locked thulium-holmium doped all-fiber laser. Opt. Laser Technol., 89, 16(2017).
[26] H. Ahmad, M. Z. Samion, A. A. Kamely, M. F. Ismail. Mode-locked thulium doped fiber laser with zinc oxide saturable absorber for 2 µm operation. Infrared Phys. Techn., 97, 142(2019).
[27] R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, M. Menon. Defect-induced optical absorption in the visible range in ZnO nanowires. Phys. Rev. B, 80, 195314(2009).
[28] J. Wang, P. Yang, X. W. Wei, Z. H. Zhou. Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection. Nano. Res. Lett., 10, 119(2015).
[29] M. Ando, K. Kadono, K. Kamada, K. Ohta. Third-order nonlinear optical responses of nanoparticulate Co3O4 films. Thin Solid Films, 446, 271(2004).
[30] X. S. Zhu, J. F. Wang, D. Nguyen, J. Thomas, R. A. Norwood, N. Peyghambarian. Linear and nonlinear optical properties of Co3O4 nanoparticle-doped polyvinyl-alcohol thin films. Opt. Mater. Express, 2, 103(2012).
[31] D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello. Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chem. Mater., 13, 588(2001).
[32] A. Nady, M. H. M. Ahmed, A. Numan, S. Ramesh, A. A. Latiff, C. H. R. Ooi, H. Arof, S. W. Harun. Passively Q-switched erbium-doped fibre laser using cobalt oxide nanocubes as a saturable absorber. J. Mod. Opt., 64, 1315(2017).
[33] A. H. H. Al-Masoodi, I. A. M. Alani, M. H. M. Ahmed, A. A. Alani, P. Wang, S. W. Harun. Cobalt oxide nanocubes thin film as saturable absorber for generating Q-switched fiber lasers at 1 and 1.5 µm in ring cavity configuration. Opt. Fiber Technol., 45, 128(2018).
[34] H. Ahmad, M. Z. Samion, N. Yusoff. Soliton mode-locked thulium-doped fiber laser with cobalt oxide saturable absorber. Opt. Fiber Technol., 45, 122(2018).
[35] J. B. Huang, S. R. Guo, Z. Z. Zhang, Z. H. Yang, S. L. Pan. Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides. Sci. Chin. Mater., 62, 1798(2019).
[36] R. Khazaeinezhad, S. H. Kassani, H. Jeong, B. Y. Kim, D. Yeom, K. J. Park, K. Oh. Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nanosheets. IEEE Photon. Technol. Lett., 27, 1581(2015).
[37] K. Huang, Z. B. Zhao, H. F. Du, P. Du, H. Wang, R. Y. Wang, S. Lin, H. H. Wei, Y. Z. Long, M. Lei, W. Guo, H. Wu. Rapid thermal annealing toward high-quality 2D cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustainable Chem. Eng., 8, 6905(2020).
[38] Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, P. G. Yan. 256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser. Appl. Phys. Express, 10, 122702(2017).
[39] R. L. Zhang, J. Wang, X. Y. Zhang, J. T. Lin, X. Li, P. W. Kuan, Y. Zhou, M. S. Liao, W. Q. Gao. Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field. Chin. Phys. B, 28, 014207(2019).
[40] L. Li, Y. L. Su, Y. G. Wang, X. Wang, Y. S. Wang, X. H. Li, D. Mao, J. H. Si. Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber. IEEE J. Sel. Top. Quantum Electron., 23, 1100306(2017).

Set citation alerts for the article
Please enter your email address