
- Chinese Optics Letters
- Vol. 20, Issue 3, 031902 (2022)
Abstract
1. Introduction
Nonlinear optical limiting (NOL) technology is to allow weak light to pass through with high transmission while blocking strong light with low transmission and thus can prevent the human eyes and sensitive optical sensors from being irreversibly damaged by high-intensity lasers[
In this Letter, we innovatively propose an infrared broadband NOL technology based on stimulated Brillouin scattering (SBS) in
2. Principle
As is similar in other types of optical fibers, the SBS in
For applications involving SBS, it is hoped that the medium has large Brillouin gain coefficient
Figure 1.Schematic diagram of the experimental setup.
3. Experimental Setup
The experimental setup used to evaluate the NOL performance of
4. Results and Discussion
The NOL experimental results of 1 m and 0.5 m
Figure 2.NOL experimental results of As2Se3 fibers with the length of 1 m and 0.5 m. (a) Output power density increases with the incident power density. (b) Normalized transmission decreases with the incident intensity.
As shown in Fig. 2(b), when the incident laser is weak, the transmission remains high and almost unchanged so that the weak signal light can be transmitted with the light power loss of 4.8 dB/m at the wavelength of 3.6 µm. However, the transmission decreases rapidly with increasing incident power density and eventually drops to 0.89% and 1.23% at the lowest level, respectively. The limiting threshold is defined as the incident power density where the transmission falls to 50% of the normalized linear transmission[
As shown in Fig. 3, the output pulses of the 1 m
Figure 3.Transmitted pulses under low and high incident power densities. (a) Transmitted pulses with the low incident intensity of 3.9 MW/cm2, 6.4 MW/cm2, and 8.3 MW/cm2, respectively. (b) Transmitted pulses after the SBS effect occurs with the high incident intensity of 39.9 MW/cm2, 550.0 MW/cm2, and 1163.1 MW/cm2, respectively.
As shown in Table 1, we list some NOL performances of 1 m and 0.5 m
Limiting Principle | [Tmax, Tmin] (at wavelength) | Limiting Threshold ( | Laser Induced Damage Threshold ( | Wavelength Range | |
---|---|---|---|---|---|
1 m | SBS | [90.36%, 0.89%](@3.6 µm) | 22.7 | 3–8 µm | |
0.5 m | SBS | [95.06%, 1.23%](@3.6 µm) | 28.4 | 3–8 µm | |
GO in NMP[ | RSA | [81%, 42%](@1750 nm) | 62.5 | – | 400–1800 nm |
GO Ormosil glasses[ | NA | [40%, 18%](@532 nm) | 22.5 | 532–1570 nm | |
GST phase change material[ | Phase change | [80%, 0.02%](@1500 nm) | – | – | 1250–2000 nm |
Table 1. Comparison of Different Infrared Broadband NOL Technologies
5. Conclusion
In summary, we propose an infrared broadband NOL technology based on the SBS effect in
References
[1] L. W. Tutt, T. F. Boggess. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum Electron., 17, 299(1993).
[2] J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, J. Wang. Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets. ACS Photonics, 4, 3063(2017).
[3] O. Muller, V. Pichot, L. Merlat, D. Spitzer. Optical limiting properties of surface functionalized nanodiamonds probed by the Z-scan method. Sci. Rep., 9, 519(2019).
[4] E. Sani, N. Papi, L. Mercatelli, S. Barison, F. Agresti, S. Rossi, A. Dell’Oro. Optical limiting of carbon nanohorn-based aqueous nanofluids: a systematic study. Nanomaterials, 10, 2160(2020).
[5] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219(2008).
[6] R. W. Waynant, I. K. Iiev, I. Gannot. Mid-infrared laser applications in medicine and biology. Phil. Trans. R. Soc. Lond. A, 359, 635(2001).
[7] B. M. Walsh, H. R. Lee, N. P. Barnes. Mid infrared lasers for remote sensing applications. J. Lumi., 169, 400(2016).
[8] M. Vainio, J. Karhu. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy. Opt. Express, 25, 4190(2017).
[9] L. G. Holemen, M. W. Haakestad. Optical limiting properties of carbon disulfide at 2.05 µm wavelength. Proc. SPIE, 9731, 97310J(2016).
[10] N. Liaros, E. Koudoumas, S. Couris. Broadband near infrared optical power limiting of few layered graphene oxides. Appl. Phys. Lett., 104, 191112(2014).
[11] S. Pascal, S. David, C. Andraud, O. Maury. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem. Soc. Rev., 50, 6613(2021).
[12] A. Sarangan, J. Duran, V. Vasilyev, N. Limberopoulos, I. Vitebskiy, I. Anisimov. Broadband reflective optical limiter using GST phase change material. IEEE Photonics J., 10, 2200409(2018).
[13] S. Aithal, P. S. Aithal, G. K. Bhat. Characteristics of ideal optical limiter and realization scenarios using nonlinear organic materials. Int. J. Adv. Trends Eng. Technol, 1, 73(2017).
[14] L. R. Robichaud, V. Fortin, J. C. Cauthier, S. Chatigny, J. F. Couillard, J. L. Delarosbil, R. Vallee, M. Bernier. Compact 3–8 µm supercontinuum generation in a low-loss As2Se3 step-index fiber. Opt. Lett., 41, 4605(2016).
[15] Y. Lv, L. Wu, X. Chong. Nonlinear optical properties of stimulated Brillouin scattering process in submerged object detection. Chin. Opt. Lett., 6, 137(2008).
[16] J. H. Vella, J. H. Goldsmith, A. T. Browning, N. I. Limberopoulos, I. Vitebskiy, E. Makri, T. Kottos. Experimental realization of a reflective optical limiter. Phys. Rev. Appl., 5, 064010(2016).
[17] E. P. Ippen, R. H. Stolen. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett., 21, 539(1972).
[18] K. Kawanishi, F. Drouet, K. Itoh, T. Konishi. Highly accurate compensation technique for 10-GHz pulse intensity fluctuation ssing SPM-based all-optical intensity limiter. IEEE Photonic Tech. Lett., 24, 119(2012).
[19] I. Martincek, D. Pudis. Fiber-optical power limiter and cut-off switch based on thermo-optical effect. IEEE Photonic Tech. Lett., 24, 297(2012).
[20] X. Chen, L. Xia, W. Li, C. Li. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber. Chin. Opt. Lett., 15, 042901(2017).
[21] A. L. Gaeta, R. W. Boyd. Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A, 44, 3205(1991).
[22] R. W. Boyd. Nonlinear Optics(2008).
[23] G. P. Agrawal. Nonlinear Fiber Optics(2012).
[24] W. Gao, L. Chen, W. Jiang, Z. Zhang, X. Zhang, P. Gao, K. Xie, W. Zhang, Y. Zhou, M. Liao, T. Suzuki, Y. Ohishi. Stimulated Brillouin scattering by the interaction between different-order optical and acoustical modes in an As2Se3 photonic crystal fiber. Chin. Opt. Lett., 18, 010602(2020).
[25] M. Zhang, L. Li, T. Li, F. Wang, K. Tian, H. Tao, X. Feng, A. Yang, Z. Yang. Mid-infrared supercontinuum generation in chalcogenide fibers with high laser damage threshold. Opt. Express, 27, 29287(2019).
[26] G. Xing, J. Jiang, J. Y. Ying, W. Ji. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Opt. Express, 18, 6183(2010).
[27] E. W. V. Stryland, M. A. Woodall, H. Vanherzeele, M. J. Soileau. Energy band-gap dependence of two-photon absorption. Opt. Lett., 10, 490(1985).
[28] K. S. Abedin. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express, 13, 10266(2005).
[29] C. Florea. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fiber. Opt. Express, 14, 12063(2006).
[30] H. Gong, Z. Lv, D. Lin, S. Liu. Influence of medium parameters on power limiting characteristic in stimulated Brillouin scattering process. Chin. Opt. Lett., 5, 674(2007).
[31] K. Ogusu, H. Li, M. Kitao. Brillouin-gain coefficients of chalcogenide glasses. J. Opt. Soc. Am. B, 21, 1302(2004).
[32] X. Sun, X. Hu, J. Sun, Z. Xie, S. Zhou, P. Chen. Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses. Adv. Compos. Hybrid Mater., 1, 397(2018).

Set citation alerts for the article
Please enter your email address