
- Chinese Optics Letters
- Vol. 19, Issue 9, 091407 (2021)
Abstract
1. Introduction
A coherent laser source emitting mid-infrared (MIR) radiation in the 2.7–3 µm wavelength band has several unique features, including (i) locating at the well-known atmospheric transparency window[
The GaIn(As)Sb/AlGaAnSb system-based strained multi-quantum-well LD is regarded as the most established semiconductor laser technology for 2–3 µm MIR laser generation[
Over the past two decades, benefiting from the great progress in material science and technology, a lot of MIR laser gain materials, especially rare-earth-doped crystalline and fiber materials with excellent optical, thermal, and mechanical properties have been developed[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Figure 1.(a) Typical emission spectrum[
2. All Solid-State Crystalline Lasers in the 2.7–3 µm Spectral Region
At present, the rare-earth ions that can achieve room temperature MIR laser operation in the 2.7–3 µm spectral region are mainly
2.1. Er3+-doped crystalline lasers in the 2.7–3 µm region
Besides the well-known laser transition of
Figure 2.(a) Simplified energy-level diagram of Er3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the summary of the room temperature CW output power and slope efficiency of Er-doped crystalline lasers at 2.7–3 µm; (c) the schematic of a diode-side-pumped Er:YSGG slab laser at 2.79 µm[
After the first, to the best of our knowledge, realization of an
Gain Medium | Er3+-Doping Concentration (at.%) | Output Power (W) | Slope Efficiency (%) | Emission Wavelength (µm) | Ref. |
---|---|---|---|---|---|
Er:YAG crystal | 50 | 1.5 | – | 2.94 | [ |
Er:GGG crystal | 30 | 0.29 | 19 | 2.8 | [ |
Er:YSGG crystal | 30 | 0.75 | 32 | 2.8 | [ |
Er:YGG crystal | 10 | 1.38 | 35.4 | 2.82–2.92 | [ |
Er:YSGG slab crystal | 38 | 1.84 | 11.2 | 2.79 | [ |
Er,Pr:GGG | 30 | 0.324 | 15.18 | 2.8 | [ |
Er,Pr:GYSGG | 20 | 0.284 | 17.4 | 2.79 | [ |
Er:YLF crystal | 15 | 1.10 | 35 | 2.8 | [ |
5 | 2 | 11 | 2.75 | [ | |
3 | 1.3 | 9.2 | 2.75 | [ | |
Er,Pr:CaF2 crystal | 3 | 0.262 | 14.9 | 2.803 | [ |
Er,Pr:CaF2-SrF2 crystal | 4 | 0.712 | 41.4 | 2.73 | [ |
7 | 5.90 | 27 | 2.9 | [ | |
2 | 14.00 | 26 | 2.7 | [ | |
0.25 | 24 | 14 | 2.74 | [ | |
11 | 6.70 | 30 | 2.8 | [ | |
Er:YAP crystal | 5 | 6.90 | 33 | 2.9 | [ |
Table 1. Laser Performance of CW Er-Doped Solid-State Crystal Lasers
In the pulsed regime, flash-side pumping is an effective and commonly used architecture to produce high-energy 2.7–3 µm laser pulses at low repetition rate. As early as 1990, pulse energy as high as 400 mJ was obtained with an Er:YAG crystal under the pump energy of 92 J[
Figure 3.(a) Experimental setup of high-energy LN EO Q-switched Er:YAG laser[
Compared to flash pumping, pulsed LD pumping has the merits of high efficiency, better beam quality, and high repetition rate. Hence, an efficient and compact diode-laser-pumped 2.94 µm Er:YAG laser with energy up to 9 mJ was realized in 2010, consequently making the hermetically sealed windowed package[
Gain Medium | SA | Output Power (mW) | Slope Efficiency (%) | Pulse Width (ns) | Pulse Repetition Rate (kHz) | Peak Power (W) | Pulse Energy (µJ) | Ref. |
---|---|---|---|---|---|---|---|---|
SESAM | 223 | 13.5 | 350 | 130.6 | 4.9 | 1.71 | [ | |
Er:YSGG crystal | Fe:ZnSe | 187 | 5.7 | 14.6 | 37.04 | 345.8 | 5.05 | [ |
Er:YSGG crystal | 110 | – | 243 | 88 | 5.14 | 1.25 | [ | |
Er:YSGG crystal | 104 | 27.3 | 324 | 126 | 2.56 | – | [ | |
Bi-NSs | 226 | 13.6 | 980 | 56.20 | 4.10 | 4.02 | [ | |
286 | 14.0 | 814 | 45.5 | 7.76 | 6.32 | [ | ||
BP | 180 | 7.9 | 702 | 77.03 | 2.34 | 3.3 | [ | |
1030 | 17.1 | 335 | 121 | 8.5 | 23.8 | [ | ||
428 | 18.2 | 679 | 38 | 11.26 | 16.58 | [ | ||
Er:YAP crystal | 526 | 14.8 | 202.8 | 244.6 | 2.2 | 10.6 | [ | |
Er:YSGG crystal | 250 | – | 160 | 78 | 13.92 | – | [ | |
Graphene | 115 | – | 296 | 44.2 | 2.59 | 8.77 | [ |
Table 2. Laser Performance of Diode-End-Pumped Passively
Besides the Q-switched pulsed lasers, the mode-locked Er-doped ultrafast lasers are of great interest for some practical applications, owing to the ultrashort pulse width and high peak power. Picosecond or even femtosecond CW mode-locked Er-doped fiber lasers have been extensively studied and realized[
2.2 Ho3+-doped crystalline lasers in the 2.7–3 µm region
The
Figure 4.(a) Simplified energy-level diagram of Ho3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the fluorescence life time “reversion” of Ho:5I6 and Ho:5I7 in Ho,Pr:YLF crystals with doping concentrations of 0.498 at.% and 0.115 at.% for Ho3+ and Pr3+ ions[
In the beginning, Ho-doped crystalline lasers operating in the 2.7–3 µm spectral region were mainly pumped by a flashlamp or pulsed laser due to lack of pumping source and the population bottleneck effect. In 1987, Machan et al. realized the simultaneous lasing of
In 1990, Anthon reported the first laser (Q-switched Nd:YAG laser operating at 1123 nm) pumped 3 µm Ho:YAG and Ho:GGG laser[
In 1998, Diening et al. realized 11 and 2.5 mW CW laser output at 2.84 µm with an
Pump Source | Gain Medium | Ho3+ Doping Concentration (at.%) | Output Power/Energy | Slope Efficiency (%) | Emission Wavelength (µm) | Ref. |
---|---|---|---|---|---|---|
Flashlamp | Ho,Nd:YAG | 10 | 41 mJ at 2.94 and 3.011 | 0.012 at 2.94 and 3.011 µm | 1.064, 1.339, 2.94, and 3.011 | [ |
1123 nm Q-switched Nd:YAG laser | Ho:YAG | 30 | – | 6 | 2.94 | [ |
Flashlamp | 2 | 42 mJ | 0.05 | 3.019 | [ | |
1.08 µm NdYAlO laser | 2 | – | 1 at 2.92 | 2.844–3.017 | [ | |
Flashlamp | Cr,Yb,Ho:YSGG | – | 2.84–3.05 | [ | ||
Yb, | 0.5 | 11.5 and 2.5 mW | 1 and 0.3 | 2.84 | [ | |
970 nm LD | Yb,Ho:YSGG | 1 | 10.5 mJ | 3.9 | 2.9 | [ |
1150 nm LD | Ho,Pr:LLF | 0.185 | 0.172 mW | 10.8 | 2.95 | [ |
1150 nm Raman fiber laser | Ho,Pr:LLF | 0.185 | 1.15 W | 15.5 | 2.95 | [ |
1150 nm fiber laser | Ho,Pr:YLF | 0.498 | 1.27 W | 28.3 | 2.9 | [ |
1150 nm Raman fiber laser | Ho,Pr:YLF | 0.498 | 1.46 W | 7.7 | 2.95 | [ |
Table 3. Flashlamp-Pumped and CW Laser Performance of Ho-Doped 2.7–3 µm MIR Lasers
In the pulsed regime, besides the microsecond pulse generated by pumping with the flashlamp and pulsed LD, nanosecond pulses were obtained with the active and passive Q-switching techniques. For passive Q-switching operation, SAs are mainly focused on low-dimensional materials. In 2017, our group realized a 2.95 µm diode-end-pumped passively Q-switched Ho,Pr:LLF laser with graphene as an SA, generating a maximum average output power of 88 mW with pulse width of 937.5 ns and repetition rate of 55.7 kHz[
The corresponding schematic experimental setup and the relationship between the output power and incident pump power are shown in Figs. 4(d) and 4(e). Table 4 summarizes the actively and passively Q-switched laser performance of Ho-doped crystalline lasers in the 2.7–3 µm region.
Gain Medium | Q Switch | Output Power (mW) | Pulse Width (ns) | Pulse Repetition Rate (kHz) | Peak Power (W) | Pulse Energy (µJ) | Ref. |
---|---|---|---|---|---|---|---|
Ho,Pr:LLF | g-CN | 101 | 420 | 93 | 2.86 | 1.1 | [ |
Ho,Pr:LLF | BP | 385 | 194.3 | 158.7 | 12.5 | 2.4 | [ |
Ho,Pr:LLF | Monolayer graphene | 88 | 937.5 | 55.7 | 1.4 | 1.6 | [ |
Ho,Pr:LLF | 58 | 818.8 | 71.05 | 1.12 | 0.82 | [ | |
Ho,Pr:LLF | Au-NPs | 268 | 734 | 91 | 4.02 | 2.95 | [ |
Ho,Pr:YLF | EO Q switch | 268 | 25.2 | 0.5 | 15,900 | 400 | [ |
Ho,Pr:LLF | 130 | 160.5 | 98.8 | 8.2 | 1.32 | [ | |
Ho,Pr:LLF | SESAM | 160 | 395 | 7.29 | 51.1 | 20.2 | [ |
Table 4. Actively and Passively
2.3. Dy3+-doped all solid-state crystalline lasers in the 2.7–3 µm spectral region
The
Figure 5.(a) Simplified energy-level diagram of Dy3+-doped gain medium and sensitizer effect of Yb3+ ions; (b) and (c) are the schematic of the actively Q-switched Dy:ZBLAN fiber laser and corresponding laser output characterizations[
However, it is a real drawback for establishing a compact MIR laser because of the pumping wavelength not corresponding to any commercially available high-power LDs. Therefore, researchers try to study the sensitized ions that can transfer pumping energy to the
3. Challenges and Outlook
Expanding the laser wavelength to the MIR region is one of the most important developing trends of laser technology. To date, laser sources with directly emitting wavelengths at 2.7–3 µm are mainly based on
First, the host material selection and the preparation of the high-quality crystals are the basis for high-power and high-efficiency solid-state MIR crystalline lasers in the 2.7–3 µm region. The longer the emitting wavelength, the narrower the bandgap between the upper and lower laser level, which, thus, results in the larger non-radiative transition loss. Therefore, for MIR laser emission, the host material should have low phonon energy to reduce the probability of non-radiative transitions. In addition, the host materials should have large thermal conductivity to mitigate the relatively heavy thermal effect of the MIR crystalline lasers. The damage threshold is another important issue for high-power and high-energy laser operation.
Second, the selection of sensitized and deactivated ions and the doping concentration are also important for rare-earth-doped crystalline lasers at 2.7–3 µm. For
Third, cascade laser operation is very attractive for multi-wavelength MIR laser generation. Based on the energy-level diagram of
Fourth, mode-locked laser operation is another challenge for rare-earth-doped crystalline lasers at 2.7–3 µm. The mode-locked laser operation in the near-infrared (1.0, 1.3, 1.5 µm) and MIR (2.0, 2.4 µm) regions has been widely studied, and picosecond or even femtosecond pulses have been generated. Due to the lack of suitable SAs and the absorption of
References
[1] H. Gebbie, W. Harding, C. Hilsum, A. Pryce, P. Sciences. Atmospheric transmission in the 1 to 14 µm region. Proc. R. Soc. A, 206, 87(1951).
[2] L. S. Rothman, R. Gamache, R. Tipping, C. Rinsland, M. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, R. Transfer. The HITRAN molecular database: editions of 1991 and 1992. J. Quantum Spectrosc. Radiat. Transfer, 48, 469(1992).
[3] L. S. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quantum Spectrosc. Radiat. Transfer, 60, 665(1998).
[4] J. E. Bertie, Z. J. A. S. Lan. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O at 25 C between 15,000 and 1 cm− 1. Am. Chem. Soc., 50, 1047(1996).
[5] S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman. 3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).
[6] T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, M. Kikuchi. High-power continuous-wave and cascade Ho3+:ZBLAN fiber laser and its medical applications. IEEE J. Sel. Top. Quantum Electron., 5, 936(1999).
[7] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 µm. Opt. Lett., 29, 334(2004).
[8] C. Wang, H. Xia, Z. Feng, Z. Zhang, D. Jiang, J. Zhang, Q. Sheng, Q. Tang, S. He, H. Jiang, B. Chen. Enhanced emission at 2.85 µm of Ho3+/Pr3+ co-doped α-NaYF4 single crystal. Optoelectron. Lett., 12, 56(2016).
[9] H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, J. He. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 µm. Opt. Lett., 42, 699(2017).
[10] M. Tempus, W. Luethy, H. Weber, V. Ostroumov, I. Shcherbakov. 2.79 µm YSGG:Cr:Er laser pumped at 790 nm. IEEE J. Quantum Electron., 30, 2608(1994).
[11] D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields. Diode-pumped 1 W continuous-wave Er:YAG 3 µm laser. Opt. Lett., 24, 385(1999).
[12] X. Zhu, R. Jain. 10-W-level diode-pumped compact 2.78 µm ZBLAN fiber laser. Opt. Lett., 32, 26(2007).
[13] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 µm. Opt. Lett., 36, 2812(2011).
[14] V. Fortin, M. Bernier, S. T. Bah, R. Vallee. 30 W fluoride glass all-fiber laser at 2.94 µm. Opt. Lett., 40, 2882(2015).
[15] W. Yao, H. Uehara, H. Kawase, H. Chen, R. Yasuhara. Highly efficient Er:YAP laser with 6.9 W of output power at 2920 nm. Opt. Express, 28, 19000(2020).
[16] T. Li, K. Beil, C. Krankel, C. Brandt, G. HuberAdvanced Solid-State Photonics. Laser performance of highly doped Er:Lu2O3 at 2.8 µm, AW5A.6(2012).
[17] R. Woodward, M. Majewski, G. Bharathan, D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).
[18] S. D. Jackson. Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett., 83, 1316(2003).
[19] H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, Y. Liu. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles. Opt. Lett., 44, 2322(2019).
[20] Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, C. Tu. Mid-infrared emission in Dy:YAlO3 crystal. Opt. Mater. Express, 4, 1104(2014).
[21] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, 538(2017).
[22] P. L. Melngailis. Maser action in InAs diodes. Appl. Phys. Lett., 2, 176(1963).
[23] D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly, T. L. Belenky. 2.3–2.7 µm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Poton. Technol. Lett., 11, 794(1999).
[24] A. D. Andreev, D. V. Donetsky. Analysis of temperature dependence of the threshold current in 2.3–2.6 µm InGaAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett., 74, 2743(1999).
[25] H. Choi, S. Eglash, G. J. Turner. Double-heterostructure diode lasers emitting at 3 µm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett., 64, 2474(1994).
[26] A. Joullié, P. Christol, A. N. Baranov, A. J. Vicet. Mid-Infrared 2–5 µm heterojunction laser diodes. Solid-State Mid-Infrared Laser Sources, 89(2003).
[27] C. Sirtori, J. J. Nagle. Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared. C. R. Physique, 4, 639(2003).
[28] D. Hofstetter, M. I. Faist. High Performance Quantum Cascade Lasers and Their Applications(2003).
[29] G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, A. J. Foltynowicz. High-power frequency comb source tunable from 2.7 to 4.2 µm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett., 42, 1748(2017).
[30] J. Zhang, K. Fritsch, Q. Wang, F. Krausz, K. F. Mak, O. J. Pronin. Intra-pulse difference-frequency generation of mid-infrared (2.7–20 µm) by random quasi-phase-matching. Opt. Lett., 44, 2986(2019).
[31] L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, J. B. Pierce. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102(1995).
[32] A. Godard. Infrared (2–12 µm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100(2007).
[33] H. Ishizuki, T. J. Taira. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture. Opt. Lett., 30, 2918(2005).
[34] Y. Peng, X. Wei, X. Luo, Z. Nie, J. Peng, Y. Wang, D. J. Shen. High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN. Opt. Lett., 41, 49(2016).
[35] H. J. Krause, W. J. Daum. High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm. Appl. Phys. B, 56, 8(1993).
[36] A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T. M. Benson. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express, 18, 26704(2010).
[37] C. Zhao, Y. Hang, L. Zhang, J. Yin, P. Hu, E. Ma. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 µm and 2.9 µm lasers. Opt. Mater., 33, 1610(2011).
[38] D. D. Hudson, S. D. Jackson, B. J. Eggleton. Novel laser sources in the mid-infrared. IEEE 3rd International Conference on Photonics, 381(2012).
[39] P. Zhang, Y. Hang, L. Zhang. Deactivation effects of the lowest excited state of Ho3+ at 2.9 µm emission introduced by Pr3+ ions in LiLuF4 crystal. Opt. Lett., 37, 5241(2012).
[40] J. Ma, Z. Qin, G. Xie, L. Qian, D. Tang. Review of mid-infrared mode-locked laser sources in the 2.0 µm–3.5 µm spectral region. Appl. Phys. Rev., 6, 140(2019).
[41] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).
[42] R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).
[43] M. Robinson, D. P. Devor. Thermal switching of laser emission of Er3+ at 2.69 µm and Tm3+ at 1.86 µm in mixed crystals of CaF2:ErF3:TmF3. Appl. Phys. Lett., 10, 167(1967).
[44] J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, H. Zhang, M. Cheng, Q. Zhang, S. Yin. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals. Opt. Lett., 38, 1218(2013).
[45] V. Lupei, S. Georgescu, V. Florea. On the dynamics of population inversion for 3 µm Er3+ lasers. IEEE J. Quantum Electron., 29, 426(1993).
[46] B. J. Dinerman, P. F. Moulton. 3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG. Opt. Lett., 19, 1143(1994).
[47] T. Jensen, V. G. Ostroumov, G. Huber. Upconversion processes in Er3+:YSGG and diode-pumped laser experiments at 2.8 µm. Advanced Solid State Lasers, IL4(1995).
[48] C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger. Emission properties of an optimised 2.8 µm Er3+:YLF laser. Opt. Commun., 139, 215(1997).
[49] T. Li, K. Beil, C. Kränkel, G. Huber. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 µm. Opt. Lett., 37, 2568(2012).
[50] Y. Wang, Z. You, J. Li, Z. Zhu. En, and C. Tu, “Spectroscopic investigations of highly doped Er3+:GGGG and Er3+/Pr3+:GGGG crystals. J. Phys. D, 42, 215406(2009).
[51] H. Zhang, X. Meng, C. Wang, P. Wang, L. Zhu, X. Liu, C. Dong, Y. Yang, R. Cheng, J. Dawes, J. Piper, S. Zhang, L. Sun. Growth, spectroscopic properties and laser output of Er:Ca4YO(BO3)3 and Er:Yb:Ca4YO(BO3)3 crystals. J. Crystal Growth, 218, 81(2000).
[52] Y. D. Zavartsev, A. I. Zagumennyi, L. A. Kulevskii, A. V. Lukashev, P. P. Pashinin, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov. Q-switching in a Cr3+: Yb3+: Ho3+: YSGG crystal laser based on the 5I6–5I7 (λ = 2.92 µm) transition. Quantum Electron., 29, 295(1999).
[53] F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, I. M. Ranieri. Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals. J. Appl. Phys., 91, 624(2002).
[54] J. Hu, H. Xia, H. Hu, X. Zhuang, Y. Zhang, H. Jiang, B. Chen. Enhanced 2.7 µm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method. Mater. Res. Bull., 48, 2604(2013).
[55] X. Zhuang, H. Xia, H. Hu, J. Hu, P. Wang, J. Peng, Y. Zhang, H. Jiang, B. Chen. Enhanced emission of 2.7 µm from Er3+/Nd3+-codoped LiYF4 single crystals. Mater. Sci. Eng. B, 178, 326(2013).
[56] P. Wang, H. Xia, J. Peng, H. Hu, L. Tang, Y. Zhang, B. Chen, H. Jiang. Concentration effect of Nd3+ ion on the spectroscopic properties of Er3+/Nd3+ co-doped LiYF4 single crystal. Mater. Chem. Phys., 144, 349(2014).
[57] Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, C. Tu. Diode-end-pumped midinfrared multiwavelength Er: Pr: GGG laser. IEEE Photon. Technol. Lett., 26, 667(2014).
[58] J. Liu, X. Fan, J. Liu, W. Ma, J. Wang, L. Su. Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. Opt. Lett., 41, 4660(2016).
[59] H. Xia, J. Feng, Y. Ji, Y. Sun, Y. Wang, Z. Jia, C. Tu. 2.7 µm emission properties of Er3+/Yb3+/Eu3+:SrGdGa3O7 and Er3+/Yb3+/Ho3+:SrGdGa3O7 crystals. J. Quant. Spectrosc. Radiat. Transfer, 173, 7(2016).
[60] X. Zhao, D. Sun, J. Luo, H. Zhang, Z. Fang, C. Quan, L. Hu, M. Cheng, Q. Zhang, S. Yin. Laser performance of a 966 nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79 µm. Opt. Lett., 43, 4312(2018).
[61] B. J. Dinerman, C. L. Moulton, A. Pinto. CW laser operation from Er:YAG, Er:GGG and Er:YSGG. Advanced Solid State Lasers, ML10(1992).
[62] R. C. Stoneman, L. Esterowitz. Efficient resonantly pumped 2.8 µm Er3+:GSGG laser. Opt. Lett., 17, 816(1992).
[63] A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, M. Andriasyan. Fe:ZnSe passive Q-switching of 2.8 µm Er:Cr:YSGG laser cavity. Proc. SPIE, 6451, 64510L(2007).
[64] J. Luo, D. Sun, H. Zhang, Q. Guo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, S. Yin. Growth, spectroscopy, and laser performance of a 2.79 µm Cr,Er,Pr:GYSGG radiation-resistant crystal. Opt. Lett., 40, 4194(2015).
[65] X. Zhao, D. Sun, J. Luo, H. Zhang, C. Quan, L. Hu, Z. Han, K. Dong, M. Cheng, S. Yin. Spectroscopic and laser properties of Er:LuSGG crystal for high-power approximately 2.8 µm mid-infrared laser. Opt. Express, 28, 8843(2020).
[66] W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1218(1987).
[67] Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, X. Tao. Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals. Crystengcomm, 21, 1928(2019).
[68] R. Stoneman, J. Lynn, L. Esterowitz. Direct upper-state pumping of the 2.8 µm, Er3+:YLF laser. IEEE J. Quantum Electron., 28, 1041(1992).
[69] C. Labbe, J. Doualan, P. Camy, R. Moncorgé, M. Thuau. The 2.8 µm laser properties of Er3+ doped CaF2 crystals. Opt. Commun., 209, 193(2002).
[70] T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, A. Y. Dergachev. Continuously tunable cw lasing near 2.75 µm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electron., 36, 591(2006).
[71] J. Liu, X. Feng, X. Fan, Z. Zhang, B. Zhang, J. Liu, L. Su. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2-SrF2 lasers in the mid-infrared region. Opt. Lett., 43, 2418(2018).
[72] R. Švejkar, J. Šulc, H. Jelínková, V. Kubeček, W. Ma, D. Jiang, Q. Wu, L. Su. Diode-pumped Er:SrF2 laser tunable at 2.7 µm. Opt. Mater. Express, 8, 1025(2018).
[73] C. Quan, D. Sun, J. Luo, H. Zhang, Z. Fang, X. Zhao, L. Hu, M. Cheng, Q. Zhang, S. Yin. 2.7 µm dual-wavelength laser performance of LD end-pumped Er:YAP crystal. Opt. Express, 26, 28421(2018).
[74] H. Kawase, R. Yasuhara. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er:YAP crystal at room temperature. Opt. Express, 27, 12213(2019).
[75] L. Merkle, N. Ter-Gabrielyan, V. Fromzel. Cryogenic laser properties of Er:YAG and Er:Sc2O3-a comparison. Advanced Solid-State Photonics, AWA2(2011).
[76] L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, D. Tang. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 µm. Opt. Express, 22, 19495(2014).
[77] H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, S. Shimizu. Efficient continuous wave and quasi-continuous wave operation of a 2.8 µm Er:Lu2O3 ceramic laser. Opt. Express, 25, 18677(2017).
[78] X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, J. Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers. Photon. Res., 6, 830(2018).
[79] D. Yin, J. Wang, Y. Wang, P. Liu, J. Ma, X. Xu, D. Shen, Z. Dong, L. B. Kong, D. Tang. Fabrication of Er:Y2O3 transparent ceramics for 2.7 µm mid-infrared solid-state lasers. J. Euro. Ceram. Soc., 40, 444(2019).
[80] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).
[81] N. Ter-Gabrielyan, V. Fromzel. Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser. Opt. Express, 27, 20199(2019).
[82] G. S. John, W. David, F. Josh. Efficient 1.5 W CW and 9 mJ quasi-CW TEM00 mode operation of a compact diode-laser-pumped 2.94 µm Er:YAG laser. Proc. SPIE, 7578, 75781E(2010).
[83] B. Shen, H. Kang, P. Chen, J. Liang, Q. Ma, J. Fang, D. Sun, Q. Zhang, S. Yin, X. Yan, L. Gao. Performance of continuous-wave laser-diode side-pumped Er:YSGG slab lasers at 2.79 µm. Appl. Phys. B, 121, 511(2015).
[84] L. You, D. Lu, Z. Pan, H. Yu, H. Zhang, J. Wang. High-efficiency 3 µm Er:YGG crystal lasers. Opt. Lett., 43, 5873(2018).
[85] H. Xue, L. Wang, W. Zhou, H. Wang, J. Wang, D. Tang, D. Shen. Stable Q-switched mode-locking of 2.7 µm Er:Y2O3 ceramic laser using a semiconductor saturable absorber. Appl. Sci., 8, 1155(2018).
[86] Z. D. Fleischman, T. Sanamyan. Spectroscopic analysis of Er3+:Y2O3 relevant to 27 µm mid-IR laser. Opt. Mater. Express, 6, 3109(2016).
[87] T. Sanamyan, M. Dubinskii. Er3+-doped diode-pumped ceramic laser delivers 14 W CW at 2.7 µm. CLEO, CMY1(2011).
[88] W. Yao, H. Uehara, S. Tokita, H. Chen, D. Konishi, M. Murakami, R. Yasuhara. LD-pumped 2.8 µm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency. Appl. Phys. Express, 14, 012001(2020).
[89] H. Kawase, H. Uehara, H. Chen, R. Yasuhara. Passively Q-switched 2.9 µm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express, 12, 102006(2019).
[90] J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, S. Yin. Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er,Pr:GYSGG crystal. Opt. Express, 21, 23425(2013).
[91] M. Inochkin, L. Khloponin, V. Khramov, G. Altshuler, A. Erofeev, S. Wilson, F. Feldchein. High-efficiency diode-pumped Er:YLF laser with multi-wavelength generation. Proc. SPIE, 8235, 823502(2012).
[92] S. Wüthrich, W. Lüthy, H. P. Weber. Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 µm. J. Appl. Phys., 68, 5467(1990).
[93] A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express, 12, 5125(2004).
[94] P. Koranda, H. Jelínková, M. Nemec, J. Sulc, M. Cech. Electro-optically Q-switched Er:YAG laser. Lasers and Applications in Science and Engineering, 141(2005).
[95] V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. G. Polushkin, A. A. Voronov. 2.94 µm Er:YAG Q-switched laser with FE2+:ZnSe passive shutter. Proc. SPIE, 6610, 661008(2007).
[96] L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, C. Xu. 2.79 µm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser. Opt. Lett., 38, 2150(2013).
[97] J. Wang, T. Cheng, L. Wang, J. Yang, D. Sun, S. Yin, X. Wu, H. Jiang. Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser. Laser Phys. Lett., 12, 105004(2015).
[98] Z. Qin, G. Xie, J. Zhang, J. Ma, P. Yuan, L. Qian. Continuous-wave and passively Q-switched Er:Y2O3 ceramic laser at 2.7 µm. International J. Opt., 2018, 3153614(2018).
[99] Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, J. Zhang. Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 µm with Fe:ZnSe saturable absorber. IEEE Photon. Technol. Lett., 31, 565(2019).
[100] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).
[101] Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, J. Xu. High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA. Opt. Lett., 42, 871(2017).
[102] X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, J. He. Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser. Opt. Lett., 42, 3502(2017).
[103] J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, L. Su. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. Photon. Res., 6, 762(2018).
[104] Q. Hao, J. Liu, Z. Zhang, B. Zhang, F. Zhang, J. Yang, J. Liu, L. Su, H. Zhang. Mid-infrared Er:CaF2–SrF2 bulk laser Q-switched by MXene Ti3C2Tx absorber. Appl. Phys. Express, 12, 085506(2019).
[105] J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, L. Su. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express, 24, 30289(2016).
[106] M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Kränkel, G. Huber. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2. Opt. Lett., 41, 540(2016).
[107] J. Xu, M. Li, Y. J. L. P. Chen. WS2 passively Q-switched Er:SrF2 laser at ∼3 µm. Laser Phys., 29, 055802(2019).
[108] Y. Yao, N. Cui, Q. Wang, L. Dong, J. L. He. Highly efficient continuous-wave and ReSe2Q-switched 3 µm dual-wavelength Er:YAP crystal lasers. Opt. Lett., 44, 2839(2019).
[109] B. Yan, B. Zhang, H. Nie, G. Li, X. Sun, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 10, 20171(2018).
[110] X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, J. Xu. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 µm. Appl. Opt., 57, 371(2018).
[111] P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, L. Qian. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 40, 4855(2015).
[112] R. I. Woodward, D. D. Hudson, A. Fuerbach, S. D. Jackson. Generation of 70 fs pulses at 2.86 µm from a mid-infrared fiber laser. Opt. Lett., 42, 4893(2017).
[113] H. Gu, Z. Qin, G. Xie, T. Hai, P. Yuan, J. Ma, L. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).
[114] C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 37, 3849(2012).
[115] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, A15(2017).
[116] H. Luo, J. Yang, J. Li, Y. Liu. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 2.8 µm. Opt. Lett., 46, 841(2021).
[117] J. Machan, R. Kurtz, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Ho, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1313(1987).
[118] A. F. Umyskov, D. Z. Yu, A. I. Zagumennyi, V. O. Vyacheslav, P. A. Studenikin. Cr3+, Yb3+, Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84–3.05 µm. Quantum Electron., 26, 563(1996).
[119] A. Diening, S. Kuck. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet. J. Appl. Phys., 87, 4063(2000).
[120] Z. Wang, B. Zhang, J. He, K. Yang, K. Han, J. Ning, J. Hou, F. Lou. Passively Q-switched mode-locking of Tm:YAP laser based on Cr:ZnS saturable absorber. Appl. Opt., 54, 4333(2015).
[121] J. Q. Hong, L. H. Zhang, M. Xu, Y. Hang. Activation and deactivation effects to Ho3+ at ∼2.8 µm MIR emission by Yb3+ and Pr3+ ions in YAG crystal. Opt. Mater. Express, 6, 1444(2016).
[122] H. Zhang, X. Sun, J. Luo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, D. Sun. Structure, defects, and spectroscopic properties of a Yb,Ho,Pr:YAP laser crystal. J. Alloys Comp., 672, 223(2016).
[123] J. Hong, L. Zhang, Y. Hang. Enhanced 2.86 µm emission of Ho3+,Pr3+-codoped LaF3 single crystal. Opt. Mater. Express, 7, 1509(2017).
[124] S. Li, L. Zhang, M. He, G. Chen, Y. Yang, S. Zhang, M. Xu, T. Yan, N. Ye, Y. Hang. Nd3+ as effective sensitizing and deactivating ions for the 2.87 µm lasers in Ho3+ doped LaF3 crystal. J. Lumin., 208, 63(2019).
[125] S. Wang, J. Zhang, N. Xu, S. Jia, G. Brambilla, P. Wang. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser. Opt. Lett., 45, 1216(2020).
[126] D. Anthon, T. Pier. Laser-pumped 3 µm Ho:YAG and Ho:GGG lasers. Advanced Solid State Lasers, MML3(1990).
[127] A. F. Umyskov, Y. D. Zavartsev, A. I. Zagumennyi, V. V. Osiko, P. A. Studenikin. Efficient 3 µm Cr3+:Yb3+:Ho3+:YSGG crystal laser. Quantum Electron., 26, 771(1996).
[128] A. V. Lukashev, Y. D. Zavartsev, A. I. Zagumennyi, M. E. Karasev, L. A. Kulevskii, P. P. Pashinin, P. A. Studenikin, V. N. Tranev. Efficient flash lamp pumped YSGG:Cr:Yb:Ho laser at 3 µm. IEEE LEOS Annual Meeting Conference, 914(1999).
[129] A. Diening, E. A. Möbert, E. Heumann, G. Huber, B. H. T. Chai. Diode-pumped cw lasing of Yb,Ho:KYF4 in the 3 µm spectral range in comparison to Er:KYF4. Laser Phys., 8, 214(1998).
[130] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 53, 8400208(2017).
[131] H. Nie, H. Xia, B. Shi, J. Hu, B. Zhang, K. Yang, J. He. High-efficiency watt-level continuous-wave 2.9 µm Ho,Pr:YLF laser. Opt. Lett., 43, 6109(2018).
[132] H. Nie, B. Shi, H. Xia, J. Hu, B. Zhang, K. Yang, J. L. He. High-repetition-rate kHz electro-optically Q-switched Ho, Pr:YLF 2.9 µm bulk laser. Opt. Express, 26, 33671(2018).
[133] S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, G. Rosenblatt. 3 µm laser performance of Ho:YAlO3 and Nd, Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).
[134] S. Bowman, W. Rabinovich, B. Feldman, M. Winings. Tuning the 3 µm Ho:YAlO3 Laser. Advanced Solid State Lasers, MML4(1990).
[135] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 24, 1600205(2017).
[136] Z. Yan, G. Li, T. Li, S. Zhao, K. Yang, S. Zhang, M. Fan, L. Guo, B. Zhang. Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2. IEEE Photon. J., 9, 1506207(2017).
[137] H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 µm bulk laser. Opt. Lett., 43, 3349(2018).
[138] M. Fan, T. Li, G. Li, S. Zhao, K. Yang, S. Zhang, B. Zhang, J. Xu, C. Kränkel. Passively Q-switched Ho,Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film. Opt. Express, 25, 12796(2017).
[139] W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, J. He. Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber. Opt. Lett., 43, 1179(2018).
[140] S. Liu, H. Nie, B. Zhang, S. Li, Y. Yan, L. He. Continuous-wave-tunable and passively Q-switched 2.9 µm Ho,Pr:LiLuF4 lasers. Laser Phys. Lett., 16, 015802(2019).
[141] L. F. Johnson, H. J. Guggenheim. Laser emission at 3 µm from Dy3+ in BaY2F8. Appl. Phys. Lett., 23, 96(1973).
[142] N. Djeu, V. E. Hartwell, A. A. Kaminskii, A. V. Butashin. Room-temperature 3.4 µm Dy:BaYb2F8 laser. Opt. Lett., 22, 997(1997).
[143] Y. H. Tsang, A. E. El. Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 µm. Opt. Express, 14, 678(2006).
[144] M. R. Majewski, S. D. Jackson. Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett., 41, 2173(2016).
[145] R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, S. D. Jackson. Q-switched Dy:ZBLAN fiber lasers beyond 3 µm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express, 27, 15032(2019).
[146] H. Luo, Y. Xu, J. Li, Y. Liu. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 µm. Opt. Express, 27, 27151(2019).
[147] Y. Dwivedi, S. B. Rai. Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass. Opt. Mater., 31, 1472(2009).
[148] P. Zhang, M. Xu, L. Zhang, J. Hong, X. Wang, Y. Wang, G. Chen, Y. Hang. Intense 2.89 µm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Opt. Express, 23, 27786(2015).

Set citation alerts for the article
Please enter your email address