
- Chinese Optics Letters
- Vol. 20, Issue 3, 031101 (2022)
Abstract
1. Introduction
Microscopy is a significant tool for research on life science and natural science. The resolution of the conventional lens system is constrained above one half-wavelength, due to the diffraction limit that evanescent waves carrying small amounts of information of an object decay in the far field. Many efforts have been made to overcome the diffraction limit; one important step is the proposed perfect lens in 2000[
On the other hand, utilizing total internal reflection (TIR) happening at the interface to excite evanescent waves, solid immersion lenses (SILs)[
Recently, absolute instruments with a gradient RI (GRIN) profile[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
In this work, we utilize power tool transformation optics (TO)[
2. Square MFEL for High Resolution
Let us recall an MFEL with a GRIN distribution that can realize perfect imaging. Assuming an MFEL located in virtual space (
Figure 1.(a) Coordination mapping in virtual space (w coordinate). (b) Coordination mapping in physical space (z coordinate). (c) The RI distribution of MFEL in virtual space (w coordinate) and ray trajectories from a point light source. (d), (e) The RI distribution of the square MFEL according to SC mapping in physical space (z coordinate) based on MFEL with n0 = 1 and n0 = 2.4, respectively, and the corresponding ray trajectories from a point light source.
According to Eq. (2), we choose a transformation from the upper half-plane (coordinates
Here, the RI distribution of the square MEFL is calculated by Eq. (4) based on a circular MFEL with
To analyze the influence of the TIR mechanism for super-resolution effects in the solid immersion square MFEL, the value
Figure 2.Imaging performance of the square MFEL with different n0. (a)–(d) The related electric field intensity distribution and the corresponding FWHM of the square MFEL at 15 GHz with n0 of 1, 1.7, 2.4, and 3.1, respectively. (e)–(h) The relative electric field Ez distributions, respectively.
Next, we will discuss the frequency response of the super-resolution effect in the square MFEL. A square MFEL with
Figure 3.Broadband imaging effect of solid immersion square MFEL at different frequencies. (a)–(d) The electric field intensity and the corresponding FWHM of the solid immersion square MFEL at frequencies of 7 GHz, 10 GHz, 13 GHz, and 16 GHz, respectively. (e)–(h) The corresponding real part of electric field distribution, respectively.
To circumvent the disadvantage of WGMs, which are easily generated due to the four corners, we optimize the design and improve the resolution of solid immersion MFEL, and propose a new quasi-square MFEL transformed from the circular MFEL by the method of SC mapping, as shown in Fig. 4(d). The quasi-square MFEL avoids the disadvantage caused by the right angle of a square MFEL, mainly through bending the four angles from straight to curved. Next, we will numerically calculate the imaging performance of the quasi-square MFEL and square MFEL with
Figure 4.(a)–(f) Electric field intensity distribution and the corresponding FWHM of the solid immersion square MFEL (the first row) and solid immersion quasi-square MFEL (the second row) at frequencies of 8 GHz, 10 GHz, and 12 GHz, respectively.
Furthermore, to better illustrate the super-resolution effect of solid immersion MFELs, the imaging performances of a solid immersion square MFEL with
Figure 5.(a)–(d) Imaging performance of solid immersion square MFELs with n0 = 2.4 at the frequencies of 8 GHz, 9 GHz, 11 GHz, and 12 GHz, respectively. (e)–(g) Imaging performance of conventional square MFELs with n0 = 1 at the frequencies of 8 GHz, 9 GHz, 11 GHz, and 12 GHz, respectively.
Finally, we discuss further application of the solid immersion square MFEL. The solid immersion square MFEL is cascaded to form a super-resolution information transmission channel for potential optical communication, as shown in Fig. 6. Three identical solid immersion square MFELs with
Figure 6.Electric field distribution of super-resolution information channel cascaded by three identical solid immersion MFELs with a 0.6 mm air gap at 12 GHz.
Although some techniques such as spatial drilling[
3. Conclusion
In summary, the solid immersion circular MFEL is transformed into a solid immersion square MFEL using SC mapping. The solid immersion square MFEL maintains the super-resolution imaging characteristics of the original circular MFEL and, at the same time, can overcome the disadvantage of a curved surface, which may pave the way for further applications such as real-time imaging, in vivo imaging, and photolithography. Through simulated calculations, the designed square MFEL can achieve super-resolution imaging at most frequencies. Moreover, the cascading solid immersion square MFELs can effectively transmit super-resolution information and have a good prospect of optical communication applications. With the development of 3D printing technology[
References
[1] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966(2000).
[2] N. Fang, H. Lee, S. Cheng, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534(2005).
[3] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand. Near-field microscopy through a SiC superlens. Science, 313, 1595(2006).
[4] I. I. Smolyaninov, Y. J. Hung, C. C. Davis. Magnifying superlens in the visible frequency range. Science, 315, 1699(2007).
[5] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435(2008).
[6] T. Huang, L. Yin, J. Zhao, C. Du, P. Liu. Amplifying evanescent waves by dispersion-induced plasmons: defying the materials limitation of the superlens. ACS Photon., 7, 2173(2020).
[7] Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).
[8] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 1, 143(2010).
[9] D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, K. E. Goodson. Microfabricated silicon solid immersion lens. J. Microelectromech. Syst., 10, 450(2001).
[10] F. M. Huang, N. Zheludev, Y. Chen, F. Javier Garcia de Abajo. Focusing of light by a nanohole array. Appl. Phys. Lett., 90, 091119(2007).
[11] D. R. Mason, M. V. Jouravlev, K. S. Kim. Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt. Lett., 35, 2007(2010).
[12] M. S. Kim, T. Scharf, M. T. Haq, W. Nakagawa, H. P. Herzig. Subwavelength-size solid immersion lens. Opt. Lett., 36, 3930(2011).
[13] A. Bogucki, Ł. Zinkiewicz, M. Grzeszczyk, W. Pacuski, K. Nogajewski, T. Kazimierczuk, A. Rodek, J. Suffczyński, K. Watanabe, T. Taniguchi. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. Light Sci. Appl., 9, 48(2020).
[14] H. Zhu, W. Fan, S. Zhou, M. Chen, L. Wu. Polymer colloidal sphere-based hybrid solid immersion lens for optical super-resolution imaging. ACS Nano, 10, 9755(2016).
[15] F. Wen, B. Yan, Z. Wang, L. Wu. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv., 2, e1600901(2016).
[16] A. Novitsky, T. Repän, R. Malureanu, O. Takayama, E. Shkondin, A. V. Lavrinenko. Search for superresolution in a metamaterial solid immersion lens. Phys. Rev. A, 99, 023835(2019).
[17] R. K. Luneburg. Mathematical Theory of Optics(1964).
[18] A. L. Mikaelian, A. M. Prokhorov. V self-focusing media with variable index of refraction. Prog. Opt., 17, 279(1980).
[19] N. Kundtz, D. R. Smith. Extreme-angle broadband metamaterial lens. Nat. Mater., 9, 129(2010).
[20] U. Leonhardt, T. G. Philbin. Perfect imaging with positive refraction in three dimensions. Phys. Rev. A, 81, 011804(R)(2010).
[21] H. F. Ma, T. J. Cui. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun., 1, 124(2010).
[22] T. Tyc, L. Herzánová, M. Šarbort, K. Bering. Absolute instruments and perfect imaging in geometrical optics. New J. Phys., 13, 115004(2011).
[23] Y. Zhao, Y. Zhang, M. Zheng, X. Dong, X. Duan, Z. Zhao. Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev., 10, 665(2016).
[24] S. Tao, Y. Zhou, H. Chen. Maxwell’s fish-eye lenses under Schwartz–Christoffel mappings. Phys. Rev. A, 99, 013837(2019).
[25] Q. Wu, J. P. Turpin, D. H. Werner. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl., 1, e38(2012).
[26] S. Li, Y. Zhou, J. Dong, X. Zhang, E. Cassan, J. Hou, C. Yang, S. Chen, D. Gao, H. Chen. Universal multimode waveguide crossing based on transformation optics. Optica, 5, 1549(2018).
[27] M. G. Scopelliti, M. Chamanzar. Ultrasonically sculpted virtual relay lens for in situ microimaging. Light Sci. Appl., 8, 65(2019).
[28] C. He, J. Chang, Q. Hu, J. Wang, J. Antonello, H. He, S. Liu, J. Lin, B. Dai, D. S. Elson, P. Xi, H. Ma, M. J. Booth. Complex vectorial optics through gradient index lens cascades. Nat. Commun., 10, 4264(2019).
[29] A. Forbes. Common elements for uncommon light: vector beams with GRIN lenses. Light Sci. Appl., 8, 111(2019).
[30] Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photon., 8, 202(2020).
[31] J. C. Maxwell. Solutions of problems. Cambridge Dublin Math. J., 8, 188(1854).
[32] X. Wang, H. Chen, H. Liu, L. Xu, C. Sheng, S. Zhu. Self-focusing and the Talbot effect in conformal transformation optics. Phys. Rev. Lett., 119, 033902(2017).
[33] J. Chen, Y. Zhou, H. Chu, Y. Lai, H. Chen, M. Chen, D. Fang. Highly efficient gradient solid immersion lens with large numerical aperture for broadband achromatic deep subwavelength focusing and magnified far field. Adv. Opt. Mater., 9, 2100509(2021).
[34] Y. Zhou, Z. Hao, P. Zhao, H. Chen. Super-resolution imaging in absolute instruments, 01632(2021).
[35] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780(2006).
[36] U. Leonhardt. Optical conformal mapping. Science, 312, 1777(2006).
[37] H. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387(2010).
[38] H. Chen, W. Xiao. Morse lens. Chin. Opt. Lett., 18, 062403(2020).
[39] M. Schmiele, V. S. Varma, C. Rockstuhl, F. Lederer. Designing optical elements from isotropic materials by using transformation optics. Phys. Rev. A, 81, 033837(2010).
[40] U. Leonhardt, T. G. Philbin. Geometry and Light: The Science of Invisibility(2010).
[41] J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang. An optical cloak made of dielectrics. Nat. Mater., 8, 568(2009).
[42] D. Headland, A. K. Klein, M. Fujita. Dielectric slot-coupled half-Maxwell fisheye lens as octave-bandwidth beam expander for terahertz-range applications, 11210(2021).
[43] L. Zhang, L. Wang, Y. Wu, R. Tai. Plasmonic Luneburg lens and plasmonic nano-coupler. Chin. Opt. Lett., 18, 092401(2020).
[44] O. Bitton, R. Bruch, U. Leonhardt. Two-dimensional Maxwell fisheye for integrated optics. Phys. Rev. Appl., 10, 044059(2018).
[45] C. R. Ocier, C. A. Richards, D. A. Bacon-Brown, Q. Ding, R. Kumar, T. J. Garcia, J. van de Groep, J.-H. Song, A. J. Cyphersmith, A. Rhode, A. N. Perry, A. J. Littlefield, J. Zhu, D. Xie, H. Gao, J. F. Messinger, M. L. Brongersma, K. C. Toussaint, L. L. Goddard, P. V. Braun. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl., 9, 196(2020).
[46] R. Dylla-Spears, T. D. Yee, K. Sasan, D. Nguyen, N. A. Dudukovic, J. M. Ortega, M. A. Johnson, O. D. Herrera, F. J. Ryerson, L. L. Wong. 3D printed gradient index glass optics. Sci. Adv., 6, 7(2020).

Set citation alerts for the article
Please enter your email address