
- Chinese Optics Letters
- Vol. 15, Issue 12, 120601 (2017)
Abstract
Distributed fiber-optic sensing technology is now attracting considerable attention in many fields since it provides continuous information along the whole fiber used for sensing applications. To realize the distributed measurement for locating the “event,” there are three main methods using different locating principles in different domains: time, frequency, and correlation[
The correlation-domain method, which provides ultrahigh (millimeter-level) spatial resolution and a relatively long measurement range[
In this Letter, we propose a method to improve the spatial resolution of Brillouin optical correlation domain analysis (BOCDA) based on frequency chirp magnification (FCM) by using the four-wave-mixing (FWM) process in highly nonlinear fiber (HNLF)[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
In conventional BOCDA systems, the frequency of the light source is sinusoidal modulated to generate periodical coherence peaks (CPs). The measurement range corresponds to the interval between two adjacent CPs, and can be given by[
According to Eq. (
Figure
Figure 1.Schematic illustration of optical frequency modulation span broadening based on the FCM technique by using the FWM process.
The experimental setup of the proposed FWM-enhanced BOCDA system is shown in Fig.
Figure 2.Experimental setup of the proposed BOCDA system based on the FCM technique. BPF: bandpass filter; VOA: variable optical attenuator; ADC: analog-to-digital converter.
As shown in Fig.
Figure 3.Measured optical spectrum after the FWM process at the end of the HNLF.
To verify the performance enhancement of the proposed technique experimentally, the pump and the Idler-1 are respectively filtered out to be used as the light source of BOCDA system. The theoretical spatial resolutions are 34 cm for the pump and 17 cm for Idler-1. A 20-cm-long dispersion-shift fiber (DSF), whose Brillouin frequency shift (BFS) is near 200 MHz downshifted from the single-mode fiber (SMF), is spliced to the end of a 1-km-long SMF. Figures
Figure 4.3D plot of the distributed BGS around the end of the FUT when (a) the pump and (b) Idler-1 are used as the light source of the BOCDA system, respectively.
Figure 5.(Color online) (a) Distribution map of the BFS measured with the pump and Idler-1; the measured BGS of the DSF when (b) the pump and (c) Idler-1 are used as light source, respectively.
The proposed FCM technique can be combined with other performance-enhancing techniques used in the BOCDA system, such as the temporal gating scheme and differential measurement technique, to achieve an extreme performance. In our experiments, we combine the FCM technique with the differential measurement technique, and achieved a spatial resolution of
Figure 6.(a) 3D plot of the distributed BGS around the end of the FUT. (b) The measured BFS around the 10 cm DSF section with differential measurement techniques. The insets show the BGS of the SMF and DSF.
In conclusion, a method based on FCM by using the FWM process in HNLF to improve the performances of BOCDA is proposed. By utilizing the FWM process to generate idler light waves, we demonstrate a wide chirp span of up to 126 GHz. By utilizing the generated idler as the light source, the effective sensing points of BOCDA are doubled from 3300 to 6600. Moreover, we also experimentally verify the capability of combining the FCM technique with other performance-enhancing schemes to a achieve higher sensing performance. By combining with the differential measurement scheme, a spatial resolution of
References
[1] M. K. Barnoski, M. D. Rourke, S. M. Jensen, R. T. Melville. Appl. Opt., 16, 2375(1977).
[2] H. Barfuss, E. Brinkmeyer. J. Lightwave Technol., 7, 3(1989).
[3] K. Hotate, O. Kamatani. J. Lightwave Technol., 11, 1701(1993).
[4] M. Soto, M. Taki, G. Bolognini, F. Pasquale. IEEE Photonics Technol. Lett., 24, 1823(2012).
[5] M. Soto, G. Bolognini, F. Pasquale. Opt. Lett., 36, 2(2011).
[6] Z. Wang, X. Jia, H. Wu, F. Peng, Y. Fu, Y. Rao. Proc. SPIE, 10323, 103230T(2017).
[7] Y. Dong, L. Chen, X. Bao. J. Lightwave Technol., 30, 8(2012).
[8] Y. Dong, L. Chen, X. Bao. Opt. Lett., 36, 2(2011).
[9] Z. Wang, Z. Pan, Q. Ye, B. Lu, Z. Fang, H. Cai, R. Qu. Chin. Opt. Lett., 13, 100603(2015).
[10] F. Peng, H. Wu, X. Jia, Y. Rao, Z. Wang, Z. Peng. Opt. Express, 22, 11(2014).
[11] Y. Peled, A. Motil, I. Kressel, M. Tur. Opt. Express, 21, 10697(2013).
[12] B. Soller, D. Gifford, M. Wolfe. Opt. Express, 13, 666(2005).
[13] R. Bernini, A. Minardo, L. Zeni. IEEE Photonics J., 4, 48(2012).
[14] K. Y. Song, Z. He, K. Hotate. Opt. Lett., 31, 17(2006).
[15] K. Y. Song, Z. He, K. Hotate. Optical Fiber Sensors, ThC2(2006).
[16] J. Chai, M. Zhang, Y. Liu, L. Li, W. Xu, Y. Wang. Chin. Opt. Lett., 13, 080604(2015).
[17] M. Zhang, X. Bao, J. Chai, Y. Zhang, R. Liu, H. Liu, Y. Liu, J. Zhang. Chin. Opt. Lett., 15(2017).
[18] K. Hotate. Meas. Sci. Technol., 13, 1746(2002).
[19] K. Hotate, Z. He. J. Lightwave Technol., 24, 7(2006).
[20] M. Shizuka, N. Hayashi, Y. Mizuno. Appl. Opt., 55, 3925(2016).
[22] B. P. -P. Kuo, S. Radic. Opt. Express, 18, 19(2010).
[23] M. Badar, H. Kobayashi, K. Iwashita. IEEE Photonics Technol. Lett., 28, 1680(2016).
[24] J. Du, Z. He. Opt. Express, 21, 22(2013).
[25] J. H. Jeong, K. Lee, K. Y. Song, J. Jeong, S. B. Lee. Opt. Express, 20, 24(2012).
[26] J. H. Jeong, K. H. Chung, S. B. Lee, K. Y. Song, J. Jeong, K. Lee. Opt. Express, 22, 2(2014).
[27] R. Shimizu, M. Kishi, K. Hotate. Proc. SPIE, 10323, 103239O(2017).
[28] Y. H. Kim, K. Lee, K. Y. Song. Opt. Express, 23, 26(2015).
[29] G. Ryu, G. T. Kim, K. Y. Song, S. B. Lee, K. Lee. Proc. SPIE, 10323, 1032369(2017).
[30] K. Hotate, K. Kajiwara. Opt. Express, 16, 7881(2008).
[31] E. Myslivets, B. P.-P. Kuo, N. Alic, S. Radic. Opt. Express, 20, 3331(2012).
[32] J. Li, X. Xiao, L. Kong, C. Yang. Opt. Express, 20, A20(2012).
[33] K. Y. Song, Z. He, K. Hotate. J. Lightwave Technol., 25, 5(2007).

Set citation alerts for the article
Please enter your email address