
- Chinese Optics Letters
- Vol. 21, Issue 1, 011408 (2023)
Abstract
1. Introduction
Since the experimental demonstration in 1994[1], with continuous optimization in structure design, material quality, and device processing, the performances of quantum cascade lasers (QCLs) have been greatly improved in terms of high output power, low power consumption, wide spectral coverage, and other characteristics[2–4]. QCLs have now become superb and versatile laser sources in the mid-infrared spectral region with a wide range of applications, such as chemical sensing, free space optical communication, high-resolution spectroscopy, and medical diagnosis[5–7].
In chemical sensing, single-mode QCL with narrow linewidth is desirable to achieve high sensitivity and selectivity. Distributed feedback (DFB) grating and distributed Bragg reflector (DBR) are often used to obtain single-mode operation with excellent performance and also compact in size[8–10]. In addition, other cavity designs have been demonstrated to achieve tunable single-mode QCLs without using grating structures, such as a candy-cane shaped coupled cavity[11] and a two-section slot waveguide[12]. To further simplify and miniaturize the sensor system for multi-species gas sensing, a monolithically integrated multi-wavelength laser source will be highly desired because it can significantly reduce the number of lasers, lenses, mirrors, and other components. Moreover, a dual-wavelength mid-infrared QCL can also be used to generate terahertz radiation at room temperature based on intracavity difference-frequency generation[13]. Recently, based on stacking two different active core structures in the same waveguide, several kinds of dual-wavelength single-mode QCLs have been demonstrated[14–16]. Jagerska et al.[14] developed a dual-wavelength QCL with two electrically separated DFB sections and different grating periods, which allow the two wavelengths to be controlled independently. Kapsalidis et al.[15] reported two designs for the realization of dual-wavelength QCLs. One was called the “neighbor” DFB, where two electrically isolated DFB QCLs with different wavelengths were fabricated very close to each other and were operated independently. The other design was a Vernier-based dual-wavelength DFB QCL, where an integrated heater was used to switch between the two DFB wavelengths. In our previous paper[16], we presented a dual-wavelength switchable QCL with two shallow-etched DBR sections and two gain sections. The multiple electrically isolated sections enabled us to select the two wavelengths independently. However, for all the dual-wavelength QCLs mentioned above, the fabrication process was complicated and costly. These devices were also not convenient to use because a sophisticated driving scheme with multiple current sources was required to inject currents of different amplitudes into the isolated sections.
In this paper, by optimizing the design of the active region and superposed DFB grating, a coaxial dual-wavelength QCL was realized without using a heterogeneous core structure. The two wavelengths were switchable just by changing the bias voltage. Room temperature continuous-wave (CW) operation was achieved, which is important to obtain a narrow emission linewidth because line broadening due to thermal chirping exists in pulsed-mode operation. Optical output powers of above 30 mW and 75 mW were achieved in CW mode at 20°C for single-mode emission at 7.61 µm and 7.06 µm, respectively. Linear tuning of the single-mode emission peaks with temperature was observed for the two wavelengths independently. The simple fabrication process and easy driving of our designed dual-wavelength QCL are very useful for developing compact multi-species gas sensing systems.
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Device Design and Fabrication
The active core is based on a bound-to-continuum design and includes 50 stages of strain-balanced
Figure 1.Conduction band diagram and the relevant wave functions of the active core under an applied electric field of 60 kV/cm.
The distribution of electrons in subbands locating below state 4 in one period conforms to the quasi-equilibrium Fermi statistics. When the applied electric field is small, the lower subband may undergo stronger thermal backfilling of electrons from the injection region of the next stage, which reduces the population inversion between states 4 and 2, and the transition is more likely to occur between states 4 and 3. Figure 2 shows the electroluminescence (EL) spectrum measured at a sub-threshold current, which reveals a strong gain peak and a weak gain peak due to transitions from states 4 to 3 and states 4 to 2, respectively. With the increasing applied electric field, the gain peak shifts to higher energy due to the Stark effect[17]. The large dynamic range of the applied electric field and the broad gain spectrum make it possible to realize single-mode dual-wavelength QCL by integrating two DFB gratings with different periods on the upper waveguide. Based on the EL spectrum,
Figure 2.EL spectrum measured at a sub-threshold current.
Figure 3.Concept design of superposed DFB grating dual-wavelength QCL. Inset: SEM image of the dual-period superposed gratings.
Figure 4.Coupling coefficient (κ) varies with the grating duty cycle (σ) for the two wavelengths. The insets show the calculated modal profiles of λ1 emission with σ = 0.5 (right) and λ2 emission with σ = 0.4 (left), respectively.
The QCL wafer was grown on a semi-insulating InP substrate by solid-source molecular beam epitaxy (MBE). The entire structure starting from the semi-insulating InP substrate was arranged as follows: 0.2 µm highly doped (Si,
3. Device Characterization and Discussion
The laser was mounted on a thermoelectric cooler to control the heatsink temperature. All measurements were performed in CW operation. The output power was measured by a calibrated thermopile detector placed in front of the laser, and the emitting spectra were measured by a Fourier transform infrared (FTIR) spectrometer with a resolution of
Detailed spectral analysis was performed in CW operation at 20°C by changing the injection current, as shown in Fig. 5(a). The threshold current (
Figure 5.(a) Optical spectra measured at various currents at 20°C in CW mode. (b) Single-mode spectra of the 7.61 µm and 7.06 µm emission at the currents of 1.2Ith and 1.7Ith, respectively, with SMSR above 25 dB.
Figure 6(a) displays the light-current-voltage (L-I-V) characteristics of the dual-wavelength QCL in CW operation. The three colored areas under the 20°C L-I curve indicate the injection current ranges of
Figure 6.(a) Light-current-voltage (L-I-V) curves of the dual-wavelength QCL measured at 10°C and 20°C in CW mode. The three colored areas under the 20°C L-I curve correspond to three different injection current ranges with different lasing modes. (b) Temperature-dependent spectra of single-mode λ1 (upper panel) and single-mode λ2 (lower panel) measured from 10°C to 40°C; the insets show the linear tuning of the peak wavenumber with temperature.
4. Conclusion
In summary, we present the design and fabrication of a dual-wavelength QCL by optimizing the design of a homogeneous active region and combining superposed DFB gratings. Switching between the two single-mode emissions was realized only by varying the bias voltage. Optical output powers of above 30 mW and 75 mW were obtained in CW mode at 20°C for single-mode emission at 7.61 µm and 7.06 µm, respectively. Room temperature CW operation is important to achieve a narrow emission linewidth because it can avoid the line broadening caused by thermal chirping in pulsed-mode operation. The peak wavelengths of the 7.61 µm and 7.06 µm emission can also be linearly tuned between 10°C and 40°C with tuning coefficients of about
References
[1] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho. Quantum cascade laser. Science, 264, 553(1994).
[2] Y. Yao, A. J. Hoffman, C. F. Gmachl. Mid-infrared quantum cascade lasers. Nat. Photonics, 6, 432(2012).
[3] M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, R. McClintock. Recent progress of quantum cascade laser research from 3 to 12 µm at the center for quantum devices [Invited]. Appl. Opt., 56, H30(2017).
[4] L. J. Mawst, D. Botez. High-power mid-infrared (λ∼3–6 µm) quantum cascade lasers. IEEE Photonics J., 14, 1508025(2022).
[5] R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel. Quantum cascade lasers in chemical physics. Chem. Phys. Lett., 487, 1(2010).
[6] S. Bartalini, M. S. Vitiello, P. De Natale. Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range. Meas. Sci. Technol., 25, 012001(2014).
[7] C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, Z. G. Wang. Free-space communication based on quantum cascade laser. J. Semicond., 36, 094009(2015).
[8] Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett., 98, 181106(2011).
[9] F. M. Cheng, J. C. Zhang, Y. J. Guan, P. C. Yang, N. Zhuo, S. Q. Zhai, J. Q. Liu, L. J. Wang, S. M. Liu, F. Q. Liu, Z. G. Wang. Ultralow power consumption of a quantum cascade laser operating in continuous-wave mode at room temperature. Opt. Express, 28, 36497(2020).
[10] F. Xie, C. G. Caneau, H. P. LeBlanc, M. T. Ho, J. Wang, S. Chaparala, L. C. Hughes, C. E. Zah. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers. Appl. Phys. Lett., 104, 071109(2014).
[11] P. Q. Liu, K. Sladek, X. J. Wang, J.-Y. Fan, C. F. Gmachl. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity. Appl. Phys. Lett., 99, 241112(2011).
[12] B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, Q. J. Wang. Tunable single-mode slot waveguide quantum cascade lasers. Appl. Phys. Lett., 104, 201106(2014).
[13] K. Fujita, S. Jung, Y. Jiang, J. H. Kim, A. Nakanishi, A. Ito, M. Hitaka, T. Edamura, M. A. Belkin. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 7, 1795(2018).
[14] J. Jagerska, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, J. Faist. Dual-wavelength quantum cascade laser for trace gas spectroscopy. Appl. Phys. Lett., 105, 161109(2014).
[15] F. Kapsalidis, M. Shahmohammadi, M. J. Suess, J. M. Wolf, E. Gini, M. Beck, M. Hundt, B. Tuzson, L. Emmenegger, J. Faist. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy. Appl. Phys. B, 124, 107(2018).
[16] Y. J. Guan, L. J. Wang, N. Zhuo, J. C. Zhang, S. Q. Zhai, J. Q. Liu, S. M. Liu, F. Q. Liu. Dual-wavelength switchable, mid-infrared quantum cascade laser with two shallow-etched distributed Bragg reflectors. Opt. Express, 29, 39376(2021).
[17] A. Bismuto, R. Terazzi, M. Beck, J. Faist. Electrically tunable, high performance quantum cascade laser. Appl. Phys. Lett., 96, 141105(2010).
[18] H. Kogelnik, C. V. Shank. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys., 43, 2327(1972).
[19] Q. Y. Lu, W. Zhang, L. J. Wang, J. Q. Liu, L. Li, F. Q. Liu, Z. G. Wang. Holographic fabricated photonic-crystal distributed-feedback quantum cascade laser with near-diffraction-limited beam quality. Opt. Express, 17, 18900(2009).
[20] A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, M. Razeghi. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Appl. Phys. Lett., 91, 071101(2007).

Set citation alerts for the article
Please enter your email address