
- Chinese Optics Letters
- Vol. 20, Issue 9, 092701 (2022)
Abstract
1. Introduction
The first quantum key distribution (QKD) protocol, BB84 protocol[
Reference frame misalignment is regarded as another inevitable problem of the QKD system, such as phase drift in the phase encoding scheme, which plays a severe negative role in disturbing the stable operation of QKD systems. By preparing and measuring the states by one more basis, the reference frame independent (RFI) protocol[
One of the assumptions in guaranteeing the security of MDI-QKD is the perfect preparation of quantum signals, which is not rigorous since perfect preparation devices in realistic scenarios do not exist. In Ref. [25], the impact of imperfect states is investigated in two types of phase encoding MDI-QKD schemes, and the rigorous estimation of secure key rates is given by the quantum coin (QC) method. Additionally, Ref. [26] proposed an improved and rigorous method to consider the basis dependent coding errors in MDI-QKD, where precise source coding can be loosened. Subsequently, the loss-tolerant (LT) protocol[
2. Protocol
We introduce the RFI-MDI-QKD protocol based on the polarization multiplexing phase encoding scheme[
Figure 1.Schematic diagram of phase encoding polarization multiplexing MDI-QKD protocol. BS, beam splitter; PBS, polarization beam splitter; PMZI, polarization-multiplexing Mach–Zehnder interferometer; PC, polarization controller and compensation. The polarization maintaining fibers separated by PBS are colored red and green to represent the orthogonal polarization H and V, respectively. The case is depicted by pulse H (red) and pulse V (green) when |ϕ0X〉A and |ϕ0Z〉B are prepared.
The role of Charlie is to detect a successful coincidence of quantum states, which are projected into the Bell state
Figure 2.Detector result. The figure illustrates how the double click of Charlie’s site detector (DH0, DH1, DV0, DV1 shown in Fig.
Here,
Meanwhile, parts of gains are classified into error gains
Above all, after
Notice that
When source flaws are considered, the phase error rate above
Similarly, the fictitious state of Bob
Here, focusing on Alice,
The corresponding value for real states
3. Source Flaw
As the protocol requires, it is necessary to quantify
Subsequently, the gains of detectors
4. Analysis
In the beginning, the transmission performance of the RFI-MDI-QKD protocol by the LT and QC methods is illustrated in Fig. 3. For simplicity,
Figure 3.Comparison of RFI-MDI-QKD with loss-tolerant (LT, solid line) and quantum coin (QC, dashed line) methods with different data sizes ( NMaMb = 1011, 1012, 1013) and the source flaw (δ = 0 or 0.075). The intensities of signal and decoy states are optimized. Other simulation parameters are provided in Table
1.2 | 0.2 dB/km | 15% |
Table 1. Simulation Parameter
Then, the key rates at the fixed distance and
Figure 4.Key rate versus source flaw δ and phase drift ω in the RFI-MDI-QKD protocol with LT (solid line) and QC (dashed line) methods at the fixed distance of 2 km (red), 20 km (purple), and 40 km (blue).
The joint impact of both source flaws
Figure 5.(a) Key rate of loss-tolerant RFI-MDI-QKD under the joint impact of source flaw δ and phase drift ω ∈ [0, π/2] at 2 km. (b) Key rate ratio (R1/R2) of MDI-QKD to RFI-MDI-QKD protocol with the LT method, which is denoted by R1 and R2, respectively.
5. Conclusion
In summary, we demonstrate the advantages of RFI-MDI-QKD and provide rigorous key rate estimation with source flaws under finite-key analysis. The protocol inherits the merits of four states preparation of the initial LT MDI-QKD protocol[
References
[1] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. International Conference on Computer System and Signal Processing, 175(1984).
[2] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).
[3] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301(2009).
[4] Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, J.-W. Pan. Large scale quantum key distribution: challenges and solutions. Opt. Express, 26, 24260(2018).
[5] N. Lütkenhaus, M. Jahma. Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys., 4, 44(2002).
[6] Y. Zhao, C.-H. Fred Fung, B. Qi, C. Chen, H.-K. Lo. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A, 78, 042333(2008).
[7] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics, 4, 686(2010).
[8] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).
[9] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).
[10] Y.-H. Zhou, Z.-W. Yu, X.-B. Wang. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A, 93, 042324(2016).
[11] H.-K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 108, 130503(2012).
[12] W. Wang, F. Xu, H.-K. Lo. Asymmetric protocols for scalable high-rate measurement-device-independent quantum key distribution networks. Phys. Rev. X, 9, 041012(2019).
[13] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, J.-W. Pan. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X, 6, 011024(2016).
[14] G.-Z. Tang, S.-H. Sun, C.-Y. Li. Experimental point-to-multipoint plug-and-play measurement-device-independent quantum key distribution network. Chin. Phys. Lett., 36, 070301(2019).
[15] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).
[16] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, J.-W. Pan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).
[17] L. Cao, W. Luo, Y. X. Wang, J. Zou, R. D. Yan, H. Cai, Y. Zhang, X. L. Hu, C. Jiang, W. J. Fan, X. Q. Zhou, B. Dong, X. S. Luo, G. Q. Lo, Y. X. Wang, Z. W. Xu, S. H. Sun, X. B. Wang, Y. L. Hao, Y. F. Jin, D. L. Kwong, L. C. Kwek, A. Q. Liu. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 011001(2020).
[18] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, C. Erven. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238(2020).
[19] Y. Cao, Y.-H. Li, K.-X. Yang, Y.-F. Jiang, S.-L. Li, X.-L. Hu, M. Abulizi, C.-L. Li, W. Zhang, Q.-C. Sun, W.-Y. Liu, X. Jiang, S.-K. Liao, J.-G. Ren, H. Li, L. You, Z. Wang, J. Yin, C.-Y. Lu, X.-B. Wang, Q. Zhang, C.-Z. Peng, J.-W. Pan. Long-distance free-space measurement-device-independent quantum key distribution(2020).
[20] A. Laing, V. Scarani, J. G. Rarity, J. L. O’Brien. Reference-frame-independent quantum key distribution. Phys. Rev. A, 82, 012304(2010).
[21] C.-M. Zhang, J.-R. Zhu, Q. Wang. Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A, 95, 032309(2017).
[22] C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 4, 1016(2017).
[23] H. Liu, J. Wang, H. Ma, S. Sun. Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica, 5, 902(2018).
[24] X.-Y. Zhou, H.-J. Ding, M.-S. Sun, S.-H. Zhang, J.-Y. Liu, C.-H. Zhang, J. Li, Q. Wang. Reference-frame-independent measurement-device-independent quantum key distribution over 200 km of optical fiber. Phys. Rev. Appl., 15, 064016(2021).
[25] K. Tamaki, H.-K. Lo, C.-H. F. Fung, B. Qi. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A, 85, 042307(2012).
[26] X.-B. Wang. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A, 87, 012320(2013).
[27] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, K. Azuma. Loss-tolerant quantum cryptography with imperfect sources. Phys. Rev. A, 90, 052314(2014).
[28] Z. Tang, K. Wei, O. Bedroya, L. Qian, H.-K. Lo. Experimental measurement-device-independent quantum key distribution with imperfect sources. Phys. Rev. A, 93, 042308(2016).
[29] M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, H.-K. Lo. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun., 5, 3732(2014).
[30] H. Chen, X.-B. An, J. Wu, Z.-Q. Yin, S. Wang, W. Chen, Z.-F. Han. Hong–Ou–Mandel interference with two independent weak coherent states. Chin. Phys. B, 25, 020305(2016).
[31] F. Xu, M. Curty, B. Qi, H.-K. Lo. Practical aspects of measurement-device-independent quantum key distribution. New J. Phys., 15, 113007(2013).
[32] X. Ma, M. Razavi. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A, 86, 062319(2012).
[33] J.-Y. Liu, X.-Y. Zhou, Q. Wang. Reference-frame-independent measurement-device-independent quantum key distribution using fewer states. Phys. Rev. A, 103, 022602(2021).
[34] Y. Xue, W. Chen, S. Wang, Z. Yin, L. Shi, Z. Han. Airborne quantum key distribution: a review. Chin. Opt. Lett., 19, 122702(2021).
[35] X. Wang, C. Dong, S. Zhao, Y. Liu, X. Liu, H. Zhu. Feasibility of space-based measurement-device-independent quantum key distribution. New J. Phys., 23, 045001(2021).
[36] J.-Y. Liu, X.-Y. Zhou, C.-H. Zhang, H.-J. Ding, Y.-P. Chen, J. Li, Q. Wang. Boosting the performance of reference-frame-independent measurement-device-independent quantum key distribution. J. Light. Technol., 39, 5486(2021).
[37] J.-Y. Liu, X.-Y. Zhou, Q. Wang. Reference-frame-independent measurement-device-independent quantum key distribution using fewer states. Phys. Rev. A, 103, 022602(2021).

Set citation alerts for the article
Please enter your email address