
- Chinese Optics Letters
- Vol. 21, Issue 10, 101202 (2023)
Abstract
1. Introduction
Fringe projection profilometry (FPP) is one of the widely used structured light three-dimensional (3D) reconstruction methods[1–4]. For various common highly reflective objects, the local intensity saturation of the captured fringe pattern leads to coding distortion, which makes it difficult for FPP to correctly extract the phase information[5]. A large number of state-of-the-art methods have been proposed to address the above issue; these methods are called high-dynamic range (HDR) techniques by scholars. Commonly used HDR techniques include the following three categories: (a) Methods based on multiple exposure adjustment[6–8]. Zhang and Yau[6] first proposed the exposure time adjustment method. These methods usually have a good image signal-to-noise ratio (SNR); however, the exposure time range is difficult to quantify, and the large number of fringes sacrifices the measurement efficiency. (b) Methods based on adaptive fringe projection[9–11]. These methods can adjust the pixel intensity of the projected fringe pattern according to the surface reflectivity. However, when the projected intensity decreases, the SNR of the captured fringe pattern will decrease as well. Further, for strongly reflective surfaces, adjusting pixel intensity is often not enough. (c) Methods based on polarizing filters[12]. Specular reflected light is polarized, so this principle can be used to eliminate fringe saturation. However, it requires additional hardware and complex adjustment on site, and reduces the SNR in dark areas.
In this work, we introduce a
2. Principle
Zhang et al.[13] proposed a two-plus-one phase-shifting method, which can reduce the motion-induced phase error. Based on Zhang’s algorithm, we introduced a
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
The wrapped phases can be expressed as
Since
To accurately calculate the three wrapped and unwrapped phases, none of the seven fringes in Eq. (1) can saturate. For a pixel at a certain index position, if any of the seven patterns saturates, it will cause a phase error. To this end, a
Refer to Appendix A for the calculation detail of Eq. (4). (a) The pixels of any one, two, or three of the high-frequency patterns in Eq. (1) are saturated, (b) the pixels of any one or both of the mid-frequency patterns in Eq. (1) are saturated, and (c) the pixels of any one or both of the low-frequency patterns in Eq. (1) are saturated. Then we substitute the pixels of the corresponding pattern in Eq. (4). The background image
There are eight cases for the high-frequency wrapped phase calculation, as shown below.
Case 1: Three high-frequency fringe patterns are not saturated.
Case 2:
Case 3:
Case 4:
Case 5:
Case 6:
Case 7:
Case 8: Three high-frequency fringe patterns are saturated.
Equations (5)–(12) can be expressed by the following general formula:
In Eq. (13), if
Similar to Eq. (13), the mid-frequency and low-frequency wrapped phases can be expressed as
In Eqs. (14) and (15), if
A mouse surface has large local highlights at the camera’s perspective. Figures 1(a) and 1(b) show the original and
Figure 1.Original and π-phase-shifted fringe patterns. (a) Original fringe; (b) π-phase-shifted fringe; (c) cross sections of (a) and (b); (d) partial enlargement of Fig. 1(c).
3. Experiments
Our FPP system includes a digital light processor (DLP) from Texas Instruments (TI) with a resolution of
In the first experiment, the measured object is a Peking Opera Mask, and a captured fringe is shown in Fig. 2(a). Figure 2(b) shows 3D reconstruction by the traditional method (TM), and Fig. 2(c) shows 3D reconstruction by the PM. It can be seen that the reconstructed surface based on the TM has a missing surface due to intensity saturation, while the reconstructed surface based on the PM is more complete. To further demonstrate the robustness of the PM, a large-area and strongly reflective object shown in Fig. 3(a) is used for 3D measurement. 3D measurement of such an object is the most challenging. Figure 3(b) shows 3D reconstruction by the TM, and Fig. 3(c) shows 3D reconstruction by the PM. By comparing Figs. 3(b) and 3(c), it can be seen that the error introduced by saturated pixels based on the PM is greatly reduced, which further confirms the effectiveness of the PM.
Figure 2.3D shape reconstruction of a mask under image saturation. (a) Original fringes with frequency 15/912; (b) 3D reconstruction by the TM; (c) 3D reconstruction by the PM.
Figure 3.3D shape reconstruction of a Chinese porcelain. (a) Original fringes with frequency 15/912; (b) 3D reconstruction by the TM; (c) 3D reconstruction by the PM.
Experimental comparisons using the TM, the adaptive fringe projection method (AFPM), the multiple exposure adjustment method (MEAM), and the PM are carried out. The measured object is a metal product manufactured by a high-speed computerized numerical control (CNC) machining center. Figure 4(a) shows a fringe
Figure 4.3D shape reconstruction comparisons of a metal product. (a) An original fringe with frequency 15/912; (b) π-phase-shifted fringe with frequency 15/912; (c) adaptive projection fringe with frequency 15/912; (d) fringe with exposure time 15 ms and frequency 180/912; (e) optimal fringe with frequency 180/912; (f) 3D measurement using the TM; (g) 3D measurement using the AFPM; (h) 3D measurement using the PM; (i) 3D measurement using the MEAM (24 exposures).
The comparisons in Fig. 4 confirm that the MEAM (24 exposures) has the best 3D measurement result. However, the large number of fringes, uncertainty in exposure time range, difficult quantification of the number of exposures, and complex operation limit the application of the MEAM. However, to quantify the measurement accuracy of the other three methods, we take the phase extracted by the MEAM (24 exposures) as the standard value and employ a sum of the phase error (SPE) to evaluate measurement accuracy. SPE is defined as
SPE comparisons of the metal product are shown in Table 1. The SPE of the PM is 81.4% lower than that of the TM, and 61.5% lower than that of the AFPM. To compare the measurement accuracy more comprehensively, we also introduced the number of phase errors (NPEs) at different phase error thresholds to evaluate the measurement accuracy, as shown in Fig. 5. It can be seen from the comparisons in Table 1 and Fig. 5 that the 3D surface reconstructed by the TM is the worst. The 3D surface reconstructed by the PM is better than that using the AFPM.
Figure 5.NPE comparisons.
Algorithm | TM | AFPM | PM |
---|---|---|---|
SPE (105 rad) | 4.7452 | 2.2906 | 0.8820 |
Table 1. Precision Comparison of a Metal Product
To further confirm the above results, we performed 3D reconstruction on a wireless mouse with high reflectivity; the results are shown in Fig. 6. Figure 6(a) shows the 3D reconstructed surface using the TM. There are a larger number of 3D surface deletions on surface ①. Figure 6(b) shows the 3D reconstructed surface using the adaptive fringe projection method. The 3D surface deletions on surface ① is greatly reduced. Figure 6(c) shows the 3D reconstructed surface using the PM. The 3D surface deletions on surface ① are less than those in Fig. 6(b). Figure 6(d) shows the 3D reconstructed surface using the 24-exposure adjustment method. The result of 3D reconstruction on surface ① based on the 24-exposure adjustment method is the best; however, the measurement efficiency of the 24-exposure adjustment method is low.
Figure 6.3D shape reconstruction comparisons of a wireless mouse. (a) 3D measurement using the TM; (b) 3D measurement using the AFPM; (c) 3D measurement using the PM; (d) 3D measurement using the 24-exposure adjustment method.
SPE comparisons of a wireless mouse are shown in Table 2. The SPE of the PM is 76.7% lower than that of the TM, and 29.7% lower than that of the AFPM.
Algorithm | TM | AFPM | PM |
---|---|---|---|
SPE (105 rad) | 4.8704 | 1.6152 | 1.1347 |
Table 2. Precision Comparison of a Wireless Mouse
Table 3 shows the comparison of the calculation time of each algorithm. Adaptive fringes generation using the AFPM is time-consuming, but the algorithm of the AFPM is the same as that of the TM, so the time cost of the TM and the AFPM is the same, 0.93 s. The time cost of the MEAM is 33.82 s, and the time cost of the PM is 1.95 s. However, the measurement efficiency is also related to the number of fringes and the manual adjustment of the equipment. The manual adjustments of AFPM and MEAM are complicated.
Algorithm | TM | AFPM | MEAM | PM |
---|---|---|---|---|
Time cost (s) | 0.93 | 0.93 | 32.82 | 1.95 |
Table 3. Comparison of the Calculation Time of Each Algorithm
The comparison of the number of fringes is shown in Table 4. For the TM based on the
Algorithm | TM | AFPM | MEAM | PM |
---|---|---|---|---|
Number of fringes | 7 | 39 | 168 | 14 |
Table 4. Comparison of the Number of Fringes
Phase errors caused by the intensity saturation can also be corrected effectively with the standard
Algorithm | TM | PM | 3F-8S |
---|---|---|---|
Number of fringes | 7 | 14 | 24 |
Table 5. Comparison of the Number of Fringes of TM, PM, and 3F-8S
Algorithm | TM | PM | 3 F-8S |
---|---|---|---|
Time cost (s) | 0.93 | 1.95 | 1.82 |
Total time cost (s) | 0.93 + 0.7 = 1.63 | 1.95 + 1.4 = 3.35 | 1.82 + 2.4 = 4.22 |
Table 6. Comparison of the Time Cost of TM, PM, and 3F-8S
Figures 7(a), 7(b), and 7(c) show a high-frequency, a mid-frequency, and a low-frequency captured fringe pattern, respectively. Surface ① of the fringe pattern contains intensity saturation. Figures 7(d), 7(e), and 7(f) show the extracted unwrapped phases based on the TM, PM, and 3F-8S. For local comparison, we extract a row of cross sections of the unwrapped phases; the results are shown in Fig. 7(g). It can be seen from the unwrapped phase comparison that the unwrapped phases extracted based on the PM and 3F-8S are similar, and much better than that of the TM.
Figure 7.Unwrapped phase comparison of the metal part. (a) High-frequency captured fringe pattern; (b) mid-frequency captured fringe pattern; (c) low-frequency captured fringe pattern; (d) unwrapped phase using the TM; (e) unwrapped phase using the PM; (f) unwrapped phase using the 3F-8S. (g) Cross-sectional comparison of the unwrapped phase (line 80).
Figure 8(a) shows a high-precision standard part processed by the CNC, whose computer-aided design (CAD) model has an ideal thickness of 8 mm. After CNC machining, we actually measured the thickness to be 8.01 mm, as shown in Figs. 8(b) and 8(c).
Figure 8.Actual measurement of the metal part. (a) High-precision standard part; (b) actual measurement of the metal part thickness; (c) actual measured value.
We take the actual measured height (thickness) of 8.01 mm as the standard height, and use the TM, PM, and 3F-8S to obtain the 3D point clouds, as shown in Fig. 9. The height errors are shown in Table 7. On the non-intensity saturated surface, the height errors of the three positions using TM are 0.036, 0.058, and 0.069 mm, respectively, where the maximum height error is 0.069 mm and the average height error is 0.054 mm. The height errors of the three same positions using the PM are 0.035, 0.006, and 0.06 mm, respectively, where the maximum height error is 0.06 mm and the average height error is 0.034 mm. The height errors of the three same positions using 3F-8S are 0.03, 0.021, and 0.055 mm, respectively, where the maximum height error is 0.055 mm and the average height error is 0.035 mm.
Algorithm | TM | PM | 3F-8S |
---|---|---|---|
Maximum height error on the non-intensity saturated surface (mm) | 0.069 | 0.06 | 0.055 |
Average height error on the non-intensity saturated surface (mm) | 0.054 | 0.034 | 0.035 |
RMSE (mm) | 2.2971 | 0.3056 | 0.2814 |
Table 7. Precision Comparison of TM, PM, and 3F-8S
Figure 9.3D point clouds of the metal part using the TM, PM, and 3F-8S. (a) 3D point cloud using the TM; (b) 3D point cloud using the PM; (c) 3D point cloud using the 3F-8S.
However, only comparing the height error of the unsaturated surface is incomplete because the above three methods can well reconstruct the 3D shape for the unsaturated surface. We can see that the 3D point cloud using the TM has holes in the intensity-saturated surface, while the 3D point clouds using PM and 3F-8S are complete in the intensity-saturated surface. For comprehensive comparison, we take the 3D point cloud using the 24-exposure method as the standard value, and use the root mean squared error (RMSE) for comparison; the results are shown in Table 7. The RMSE using PM is 86.7% lower than that using the TM, and the RMSE using 3F-8S is 87.7% lower than that using the TM. By comparison, it can be seen that the RMSE using the PM is similar to that using 3F-8S, but the number of fringe patterns is reduced by 41.7%.
4. Discussion
5. Conclusions
For 3D measurement of a non-diffuse surface based on the

Set citation alerts for the article
Please enter your email address