
- Chinese Optics Letters
- Vol. 20, Issue 2, 021404 (2022)
Abstract
Keywords
1. Introduction
In recent years, more efforts have been devoted to the research of ultrashort pulses with high average power for various applications such as pumping of optical parametric oscillators, material micromachining, multi-photon imaging, and terahertz applications[
So far, many Yb-doped gain media, such as
At present, the most common methods to obtain ultrafast lasers are the Kerr-lens and semiconductor saturable absorber mirror (SESAM) mode-locking for Yb-doped oscillators. Kerr-lens mode-locking is usually accompanied by other effects such as self-phase modulation, which can increase new spectral components to support shorter pulse duration. In 2017, the Kerr-lens mode-locked Yb:KGW laser generated 120 fs pulses at 1.2 W and 240 fs pulses with the maximum average output power of 2.3 W due to the limitation of the strong continuous wave (CW) spectrum components[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
In this work, the single LD was used as the pump source, and one Yb:KGW crystal was used as the gain medium. We demonstrate a high-power, SESAM mode-locked Yb:KGW oscillator delivering 261 fs pulses with 13.0 W of average output power at the repetition rate of 68.4 MHz, corresponding to 190 nJ of single pulse energy and 0.72 MW of peak power. The power stability root-mean-square (RMS) for 2 h was less than 0.543%, and the laser exhibited a high beam quality.
2. Experiments
The schematic experimental configuration of the SESAM mode-locked Yb:KGW laser is shown in Fig. 1. An unpolarized multimode fiber coupled LD with 105 µm of fiber core diameter and 0.22 of numerical aperture was used as pump source, where its emission wavelength was 980 nm, and the maximum output power was 50 W. An Nm-cut 3%-doped Yb:KGW crystal (CASTECH, China) was used as gain material, and its size was
Figure 1.Experimental configuration of the SESAM mode-locked Yb:KGW laser. LD, laser diode; Yb:KGW, Yb:KG(WO4)2; SESAM, semiconductor saturable absorber mirror; DM, dichroic mirror; HR, high reflection mirror; M1, M2, M3, concave mirrors (R = 500 mm, 300 mm, 500 mm, respectively); OC, output coupler; GTI, Gires–Tournois interferometer mirror.
3. Results and Discussion
In this experiment, we obtained the CW mode-locked laser using the SESAM as an end mirror to initiate and maintain the mode-locking. Firstly, with 8% transmittance output couple mirror and GTI mirrors of a total GVD of
Figure 2.(a) Output power as a function of the pump power. The blue solid line has a slope efficiency of 64.4%. (b) Power fluctuations at 13 W average output power in 2 h.
As released in Fig. 3, the optical spectrum was measured by an optical spectrum analyzer (OSA, Yokogawa AQ6370C) and centered at 1039 nm with a full width at half-maximum (FWHM) spectral bandwidth of 5.1 nm, corresponding to 222 fs of Fourier limited pulse duration. With a total negative group delay dispersion (GDD) of
Figure 3.Spectral distribution of Yb:KGW mode-locked laser at the average output power of 13 W.
Figure 4.Measured intensity autocorrelation trace of Yb:KGW femtosecond laser at the central wavelength of 1039 nm.
As can be seen from the RF spectrum with a resolution bandwidth (RBW) of 1 kHz displayed in Fig. 5, the fundamental tone at 68.44 MHz measured by an RF spectrum analyzer (E4402B, Agilent) was more than 63 dB above the noise floor. With an RBW of 200 kHz, an inset in Fig. 5 shows that no additional peaks between the higher-order modes were observed. The beam quality factors were measured by a commercial
Figure 5.Typical RF with an RBW of 1 kHz. Inset: RF spectrum at 1 GHz wide span with the RBW of 200 kHz.
Figure 6.Measured beam quality factor M2 of Yb:KGW femtosecond oscillator at the 13 W average output power.
4. Conclusion
In conclusion, we have reported on a high-power diode-pumped SESAM mode-locked Yb:KGW laser. With the 10% transmission OC, the maximum average output power directly generated from the oscillator was up to 13.0 W, corresponding to the optical-to-optical conversion efficiency of 39.8%. When the total GVD was
In order to scale the output power while persisting short pulse duration in the SESAM mode-locked regime, some improvements as follows could be made. Firstly, increasing the radius of the spot on the crystal can improve the utilization rate of the pump laser and allow high-power laser pumping. Meanwhile, the thin fused quartz is inserted into the resonator to introduce self-phase modulation resulting in a broader spectrum, and more precise dispersion is also necessary to obtain shorter pulse duration. Finally, the SESAM with high optical quality and high damage threshold is used to optimize the output laser parameters. This will be a potential laser source in various applications.
References
[1] J. Song, X. Meng, Z. Wang, X. Wang, W. Tian, J. Zhu, S. Fang, H. Teng, Z. Wei. Harmonically pump a femtosecond optical parametric oscillator to 1.13 GHz by a femtosecond 515 nm laser. Chin. Opt. Lett., 18, 033201(2020).
[2] C. F. O’Donnell, S. Chaitanya Kumar, P. G. Schunemann, M. Ebrahim-Zadeh. Femtosecond optical parametric oscillator continuously tunable across 3.6–8 µm based on orientation-patterned gallium phosphide. Opt. Lett., 44, 4570(2019).
[3] K. Ahmmed, C. Grambow, A.-M. Kietzig. Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines, 5, 1219(2014).
[4] G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J. L. Doualan, R. Moncorge, P. Georges, F. Druon, D. Descamps, E. Cormier. “High-brightness fiber laser-pumped 68 fs 2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator. Opt. Lett., 38, 4008(2013).
[5] G. Ju, L. Chai, Q. Wang, Z. Zhang, Y. Wang, X. Ma. Stable mode-locking in an Yb: YAG laser with a fast SESAM. Chin. Opt. Lett., 1, 695(2003).
[6] H. Zeng, H. Lin, Z. Lin, L. Zhang, Z. Lin, G. Zhang, V. Petrov, P. Loiko, X. Mateos, L. Wang, W. Chen. Diode-pumped sub-50 fs Kerr-lens mode-locked Yb:GdYCOB laser. Opt. Express, 29, 13496(2021).
[7] R. Akbari, A. Major. High-power diode-pumped Kerr-lens mode-locked bulk Yb:KGW laser. Appl. Opt., 56, 8838(2017).
[8] F. Mejiti, V. L. Kalashnikov, I. G. Poloyko, T. Vajidi. Kerr lens mode-locked operation of Yb: KYW laser. Chin. J. Lasers B, 11, 166(2002).
[9] A. Greborio, A. Guandalini, J. Aus der Au. Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators. Proc. SPIE, 8235, 823511(2012).
[10] W. Tian, C. Yu, J. Zhu, D. Zhang, Z. Wei, X. Xu, J. Xu. Diode-pumped high-power sub-100 fs Kerr-lens mode-locked Yb:CaYAlO4 laser with 1.85 MW peak power. Opt. Express, 27, 21448(2019).
[11] B. Lee, B. Jeong, J. W. Kim, E. G. Sall, C. Kim, S. Park, D. Heo, S. A. Chizhov, J. Yang, V. E. Yashin, G.-H. Kim. High-power Yb:YAG thin-rod amplifier for use in a regenerative amplifier based on dual-slab Yb:KGW crystals. Laser Phys., 31, 065001(2021).
[12] S. Manjooran, A. Major. Diode-pumped 45 fs Yb:CALGO laser oscillator with 1.7 MW of peak power. Opt. Lett., 43, 2324(2018).
[13] N. Modsching, C. Paradis, F. Labaye, M. Gaponenko, I. J. Graumann, A. Diebold, F. Emaury, V. J. Wittwer, T. Sudmeyer. Kerr lens mode-locked Yb:CALGO thin-disk laser. Opt. Lett., 43, 879(2018).
[14] J. F. Li, X. Y Liang, J. P. He, H. Lin. Stable, efficient diode-pumped femtosecond Yb:KGW laser through optimization of energy density on SESAM. Chin. Opt. Lett., 9, 071406(2011).
[15] L. Zheng, W. Tian, H. Liu, G. Wang, C. Bai, R. Xu, D. Zhang, H. Han, J. Zhu, Z. Wei. 2-GHz watt-level Kerr-lens mode-locked Yb:KGW laser. Opt. Express, 29, 12950(2021).
[16] Y. Wang, X. Su, Y. Xie, F. Gao, S. Kumar, Q. Wang, C. Liu, B. Zhang, B. Zhang, J. He. 17.8 fs broadband Kerr-lens mode-locked Yb:CALGO oscillator. Opt. Lett., 46, 1892(2021).
[17] W. Tian, R. Xu, L. Zheng, X. Tian, D. Zhang, X. Xu, J. Zhu, J. Xu, Z. Wei. 10-W-scale Kerr-lens mode-locked Yb:CALYO laser with sub-100-fs pulses. Opt. Lett., 46, 1297(2021).
[18] N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, G. Huber. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2. Opt. Lett., 22, 1317(1997).
[19] H. Zhao, A. Major. Megawatt peak power level sub-100 fs Yb:KGW oscillators. Opt. Express, 22, 30425(2014).
[20] X. Meng, C. lv, Q. Liu, X. Zhang, Y. Li, X. Xi, B. Zhao. Diode-pumped Yb:KGW laser with 73 fs pulse and 0.72 MW peak power based on Kerr-lens mode locking. Appl. Phys. B, 125, 166(2019).
[21] H. Zhao, A. Major. Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator. Opt. Express, 21, 31846(2013).
[22] R. Akbari, K. A. Fedorova, E. U. Rafailov, A. Major. Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking. Appl. Phys. B, 123, 123(2017).
[23] F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, U. Keller. Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power. Opt. Lett., 25, 1119(2000).
[24] G. Paunescu, J. Hein, R. Sauerbrey. 100-fs diode-pumped Yb:KGW mode-locked laser. Appl. Phys. B, 79, 555(2004).
[25] A. L. Calendron, K. S. Wentsch, M. J. Lederer. High power cw and mode-locked oscillators based on Yb:KYW multi-crystal resonators. Opt. Express, 16, 18838(2008).
[26] V. E. Kisel, A. S. Rudenkov, A. A. Pavlyuk, A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, N. N. Rubtsova, B. R. Semyagin, N. V. Kuleshov. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser. Opt. Lett., 40, 2707(2015).
[27] D. Y. Yan, B. W. Liu, Y. X. Chu, H. Y. Song, L. Chai, M. L. Hu, Q. Y. Wang. Hybrid femtosecond laser system based on a Yb:KGW regenerative amplifier for NP polarization. Chin. Opt. Lett., 17, 041404(2019).
[28] H. He, J. Yu, W. Zhu, X. Guo, C. Zhou, S. Ruan. A Yb:KGW dual-crystal regenerative amplifier. High Power Laser Sci. Eng., 8, e35(2020).

Set citation alerts for the article
Please enter your email address