Search by keywords or author
Export citation format
Research Articles
Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries
Changsheng Ding, Zhang Chen, Chuanxiang Cao, Yu Liu, and Yanfeng Gao
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electroAqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries..
Nano-Micro Letters
- Publication Date: Aug. 09, 2023
- Vol. 15, Issue 1, 192 (2023)
Highly Selective Electrocatalytic CuEDTA Reduction by MoS2 Nanosheets for Efficient Pollutant Removal and Simultaneous Electric Power Output
Hehe Qin, Xinru Liu, Xiangyun Liu, Hongying Zhao, and Shun Mao
Electrocatalytic reduction of ethylenediamine tetraacetic acid copper (CuEDTA), a typical refractory heavy metal complexation pollutant, is an environmental benign method that operates at mild condition. Unfortunately, the selective reduction of CuEDTA is still a big challenge in cathodic process. In this work, we repoElectrocatalytic reduction of ethylenediamine tetraacetic acid copper (CuEDTA), a typical refractory heavy metal complexation pollutant, is an environmental benign method that operates at mild condition. Unfortunately, the selective reduction of CuEDTA is still a big challenge in cathodic process. In this work, we report a MoS2 nanosheet/graphite felt (GF) cathode, which achieves an average Faraday efficiency of 29.6% and specific removal rate (SRR) of 0.042 mol/cm2/h for CuEDTA at - 0.65 V vs SCE (saturated calomel electrode), both of which are much higher than those of the commonly reported electrooxidation technology-based removal systems. Moreover, a proof-of-concept CuEDTA/Zn battery with Zn anode and MoS2/GF cathode is demonstrated, which has bifunctions of simultaneous CuEDTA removal and energy output. This is one of the pioneer studies on the electrocatalytic reduction of heavy metal complex and CuEDTA/Zn battery, which brings new insights in developing efficient electrocatalytic reduction system for pollution control and energy output..
Nano-Micro Letters
- Publication Date: Aug. 09, 2023
- Vol. 15, Issue 1, 193 (2023)
Multifunctional MXene/C Aerogels for Enhanced Microwave Absorption and Thermal Insulation
Fushuo Wu, Peiying Hu, Feiyue Hu, Zhihua Tian, Jingwen Tang, Peigen Zhang, Long Pan, Michel W. Barsoum, Longzhu Cai, and ZhengMing Sun
Two-dimensional transition metal carbides and nitrides (MXene) have emerged as promising candidates for microwave absorption (MA) materials. However, they also have some drawbacks, such as poor impedance matching, high self-stacking tendency, and high density. To tackle these challenges, MXene nanosheets were incorporaTwo-dimensional transition metal carbides and nitrides (MXene) have emerged as promising candidates for microwave absorption (MA) materials. However, they also have some drawbacks, such as poor impedance matching, high self-stacking tendency, and high density. To tackle these challenges, MXene nanosheets were incorporated into polyacrylonitrile (PAN) nanofibers and subsequently assembled into a three-dimensional (3D) network structure through PAN carbonization, yielding MXene/C aerogels. The 3D network effectively extends the path of microcurrent transmission, leading to enhanced conductive loss of electromagnetic (EM) waves. Moreover, the aerogel’s rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXene-based absorbers. EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss (RLmin) value of - 53.02 dB (f = 4.44 GHz, t = 3.8 mm), and an effective absorption bandwidth (EAB) of 5.3 GHz (t = 2.4 mm, 7.44–12.72 GHz). Radar cross-sectional (RCS) simulations were employed to assess the radar stealth effect of the aerogels, revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m2. In addition to the MA performance, the MXene/C aerogel also demonstrates good thermal insulation performance, and a 5-mm-thick aerogel can generate a temperature gradient of over 30 °C at 82 °C. This study provides a feasible design approach for creating lightweight, efficient, and multifunctional MXene-based MA materials..
Nano-Micro Letters
- Publication Date: Aug. 09, 2023
- Vol. 15, Issue 1, 194 (2023)
Competitive Redox Chemistries in Vanadium Niobium Oxide for Ultrafast and Durable Lithium Storage
Xiaobo Ding, Jianhao Lin, Huiying Huang, Bote Zhao, and Xunhui Xiong
Niobium pentoxide (Nb2O5) anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety. However, Nb2O5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications. Herein, the ovNiobium pentoxide (Nb2O5) anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety. However, Nb2O5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications. Herein, the over-reduction of Nb5+ has been demonstrated to be the critical reason for the capacity loss for the first time. Besides, an effective competitive redox strategy has been developed to solve the rapid capacity decay of Nb2O5, which can be achieved by the incorporation of vanadium to form a new rutile VNbO4 anode. The highly reversible V3+/V2+ redox couple in VNbO4 can effectively inhibit the over-reduction of Nb5+. Besides, the electron migration from V3+ to Nb5+ can greatly increase the intrinsic electronic conductivity for VNbO4. As a result, VNbO4 anode delivers a high capacity of 206.1 mAh g-1 at 0.1 A g-1, as well as remarkable cycle performance with a retention of 93.4% after 2000 cycles at 1.0 A g-1. In addition, the assembled lithium-ion capacitor demonstrates a high energy density of 44 Wh kg-1 at 5.8 kW kg-1. In summary, our work provides a new insight into the design of ultra-fast and durable anodes..
Nano-Micro Letters
- Publication Date: Aug. 10, 2023
- Vol. 15, Issue 1, 195 (2023)
Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors
Xin Lu, Daibin Xie, Kaihua Zhu, Shouhao Wei, Ziwei Mo, Chunyu Du, Lirong Liang, Guangming Chen, and Zhuoxin Liu
The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvenThe evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human–machine interfaces..
Nano-Micro Letters
- Publication Date: Aug. 11, 2023
- Vol. 15, Issue 1, 196 (2023)
Bioorthogonal Engineered Virus-Like Nanoparticles for Efficient Gene Therapy
Chun-Jie Bao, Jia-Lun Duan, Ying Xie, Xin-Ping Feng, Wei Cui, Song-Yue Chen, Pei-Shan Li, Yi-Xuan Liu, Jin-Ling Wang, Gui-Ling Wang, and Wan-Liang Lu
Gene therapy offers potentially transformative strategies for major human diseases. However, one of the key challenges in gene therapy is developing an effective strategy that could deliver genes into the specific tissue. Here, we report a novel virus-like nanoparticle, the bioorthgonal engineered virus-like recombinanGene therapy offers potentially transformative strategies for major human diseases. However, one of the key challenges in gene therapy is developing an effective strategy that could deliver genes into the specific tissue. Here, we report a novel virus-like nanoparticle, the bioorthgonal engineered virus-like recombinant biosome (reBiosome), for efficient gene therapies of cancer and inflammatory diseases. The mutant virus-like biosome (mBiosome) is first prepared by site-specific codon mutation for displaying 4-azido-L-phenylalanine on vesicular stomatitis virus glycoprotein of eBiosome at a rational site, and the reBiosome is then prepared by clicking weak acid-responsive hydrophilic polymer onto the mBiosome via bioorthogonal chemistry. The results show that the reBiosome exhibits reduced virus-like immunogenicity, prolonged blood circulation time and enhanced gene delivery efficiency to weakly acidic foci (like tumor and arthritic tissue). Furthermore, reBiosome demonstrates robust therapeutic efficacy in breast cancer and arthritis by delivering gene editing and silencing systems, respectively. In conclusion, this study develops a universal, safe and efficient platform for gene therapies for cancer and inflammatory diseases..
Nano-Micro Letters
- Publication Date: Aug. 12, 2023
- Vol. 15, Issue 1, 197 (2023)
Maximizing Terahertz Energy Absorption with MXene Absorber
Xinliang Li, and Hao Luo
Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers. Recently in Nature Photonics, Xiao et al. reported the high absorption approaching the theoretical upper limit across the whole terahertz band of MXene-based terahertz absorbers and, on this basis,Achieving high absorption in broad terahertz bands has long been challenging for terahertz electromagnetic wave absorbers. Recently in Nature Photonics, Xiao et al. reported the high absorption approaching the theoretical upper limit across the whole terahertz band of MXene-based terahertz absorbers and, on this basis, constructed an applicable, updated alternating current impedance matching model..
Nano-Micro Letters
- Publication Date: Aug. 12, 2023
- Vol. 15, Issue 1, 198 (2023)
Conformal Human–Machine Integration Using Highly Bending-Insensitive, Unpixelated, and Waterproof Epidermal Electronics Toward Metaverse
Chao Wei, Wansheng Lin, Liang Wang, Zhicheng Cao, Zijian Huang, Qingliang Liao, Ziquan Guo, Yuhan Su, Yuanjin Zheng, Xinqin Liao, and Zhong Chen
Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals, which is critical to the breakthrough development of metaverse. Interactive electronics face common dilemmas, which realize high-precision and stable touch detection but are rigid, bulky, and thick or aEfficient and flexible interactions require precisely converting human intentions into computer-recognizable signals, which is critical to the breakthrough development of metaverse. Interactive electronics face common dilemmas, which realize high-precision and stable touch detection but are rigid, bulky, and thick or achieve high flexibility to wear but lose precision. Here, we construct highly bending-insensitive, unpixelated, and waterproof epidermal interfaces (BUW epidermal interfaces) and demonstrate their interactive applications of conformal human–machine integration. The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection, high flexibility, rapid response time, excellent stability, and versatile “cut-and-paste” character. Regardless of whether being flat or bent, the BUW epidermal interface can be conformally attached to the human skin for real-time, comfortable, and unrestrained interactions. This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics, which offers a new technology route and may further broaden human–machine interactions toward metaverse..
Nano-Micro Letters
- Publication Date: Aug. 16, 2023
- Vol. 15, Issue 1, 199 (2023)
Trimming the Degrees of Freedom via a K+ Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries
Xianhui Yi, Apparao M. Rao, Jiang Zhou, and Bingan Lu
High degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier toHigh degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier to trim K ion’s DOF to 1 and improve electrochemical properties. Although the ionic conductivity is compromised in the K+ flux rectifier, the overall electrochemical performance of PIBs was improved. An oxidation stability improvement from 4.0 to 5.9 V was realized, and the formation of dendrites and the dissolution of organic cathodes were inhibited. Consequently, the K||K cells continuously cycled over 3,700 h; K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%; and K||graphite cells exhibited high-capacity retention over 74.7% after 1,500 cycles. Moreover, the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time. We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles..
Nano-Micro Letters
- Publication Date: Aug. 18, 2023
- Vol. 15, Issue 1, 200 (2023)
Cerium Methacrylate Assisted Preparation of Highly Thermally Conductive and Anticorrosive Multifunctional Coatings for Heat Conduction Metals Protection
Fei Xu, Peng Ye, Jianwen Peng, Haolei Geng, Yexiang Cui, Di Bao, Renjie Lu, Hongyu Zhu, Yanji Zhu, and Huaiyuan Wang
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity (TC) to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task. Here we report a multifunctional epoxy composite coating (F-Preparing polymeric coatings with well corrosion resistance and high thermal conductivity (TC) to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task. Here we report a multifunctional epoxy composite coating (F-CB/CEP) by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through "cation-π" interaction. The prepared F-CB/CEP coating presents a high TC of 4.29 W m-1 K-1, which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating. Meanwhile, the low-frequency impedance remains at 5.1 × 1011 Ω cm2 even after 181 days of immersion in 3.5 wt% NaCl solution. Besides, the coating also exhibits well hydrophobicity, self-cleaning properties, temperature resistance and adhesion. This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials, especially for heat conduction metals protection..
Nano-Micro Letters
- Publication Date: Aug. 18, 2023
- Vol. 15, Issue 1, 201 (2023)
High-Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium-Ion Storage
Changlong Sun, Xin Xu, Cenlin Gui, Fuzhou Chen, Yian Wang, Shengzhou Chen, Minhua Shao, and Jiahai Wang
Tailoring the interfacial interaction in SiC-based anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage. In this paper, atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene (NG) on SiC (NG@SiCTailoring the interfacial interaction in SiC-based anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage. In this paper, atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene (NG) on SiC (NG@SiC). This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction, making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration. Both density functional theory (DFT) analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds, enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation. As a proof-of-concept study, this well-designed NG@SiC anode shows good reversible capacity (1197.5 mAh g-1 after 200 cycles at 0.1 A g-1) and cycling durability with 76.6% capacity retention at 447.8 mAh g-1 after 1000 cycles at 10.0 A g-1. As expected, the lithium-ion full cell (LiFePO4/C//NG@SiC) shows superior rate capability and cycling stability. This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond..
Nano-Micro Letters
- Publication Date: Aug. 18, 2023
- Vol. 15, Issue 1, 202 (2023)
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia
Daming Feng, Lixue Zhou, Timothy J. White, Anthony K. Cheetham, Tianyi Ma, and Fengxia Wei
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications, especially for the green ammonia (NH3) industry. A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance. Among varioElectrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications, especially for the green ammonia (NH3) industry. A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance. Among various types of promising nanomaterials, metal–organic frameworks (MOFs) are competitive candidates for developing efficient electrocatalytic NH3 synthesis from simple nitrogen-containing molecules or ions, such as N2 and NO3-. In this review, recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH3 are collected, categorized, and discussed, including their application in the N2 reduction reaction (NRR) and the NO3- reduction reaction (NO3RR). Firstly, the fundamental principles are illustrated, such as plausible mechanisms of NH3 generation from N2 and NO3-, the apparatus of corresponding electrocatalysis, parameters for evaluation of reaction efficiency, and detection methods of yielding NH3. Then, the electrocatalysts for NRR processes are discussed in detail, including pristine MOFs, MOF-hybrids, MOF-derived N-doped porous carbons, single atomic catalysts from pyrolysis of MOFs, and other MOF-related materials. Subsequently, MOF-related NO3RR processes are also listed and discussed. Finally, the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH3 synthesis are presented, such as the evolution of investigation methods with artificial intelligence, innovation in synthetic methods of MOF-related catalysts, advancement of characterization techniques, and extended electrocatalytic reactions..
Nano-Micro Letters
- Publication Date: Aug. 24, 2023
- Vol. 15, Issue 1, 203 (2023)
Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight, Flexible, and Hydrophobic Multifunctional Electromagnetic Protective Fabrics
Shuo Zhang, Xuehua Liu, Chenyu Jia, Zhengshuo Sun, Haowen Jiang, Zirui Jia, and Guanglei Wu
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of “Thunberg’s meadowsweet” in nature, a nanofibrous composite membrane with hierarchical structure was constructed. InThe development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of “Thunberg’s meadowsweet” in nature, a nanofibrous composite membrane with hierarchical structure was constructed. Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane. The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor, and intelligently integrate multiple heterostructures to enhance dielectric polarization, which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials. Due to the synergistic enhancement of electrospinning-derived carbon nanofiber “stems”, MOF-derived carbon nanosheet “petals” and transition metal selenide nano-particle “stamens”, the CoxSey/NiSe@CNSs@CNFs (CNCC) composite membrane obtains a minimum reflection loss value (RLmin) of -68.40 dB at 2.6 mm and a maximum effective absorption bandwidth (EAB) of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%. In addition, the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility, water resistance, thermal management, and other multifunctional properties. This work provides unique perspectives for the precise design and rational application of multifunctional fabrics..
Nano-Micro Letters
- Publication Date: Aug. 25, 2023
- Vol. 15, Issue 1, 204 (2023)
Synergistic “Anchor-Capture” Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode
Zhen Luo, Yufan Xia, Shuang Chen, Xingxing Wu, Ran Zeng, Xuan Zhang, Hongge Pan, Mi Yan, Tingting Shi, Kai Tao, Ben Bin Xu, and Yinzhu Jiang
While the rechargeable aqueous zinc-ion batteries (AZIBs) have been recognized as one of the most viable batteries for scale-up application, the instability on Zn anode–electrolyte interface bottleneck the further development dramatically. Herein, we utilize the amino acid glycine (Gly) as an electrolyte additive to stWhile the rechargeable aqueous zinc-ion batteries (AZIBs) have been recognized as one of the most viable batteries for scale-up application, the instability on Zn anode–electrolyte interface bottleneck the further development dramatically. Herein, we utilize the amino acid glycine (Gly) as an electrolyte additive to stabilize the Zn anode–electrolyte interface. The unique interfacial chemistry is facilitated by the synergistic “anchor-capture” effect of polar groups in Gly molecule, manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn2+ in the local region. As such, this robust anode–electrolyte interface inhibits the disordered migration of Zn2+, and effectively suppresses both side reactions and dendrite growth. The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22% at 1 mA cm-2 and 0.5 mAh cm-2 over 500 cycles. Even at a high Zn utilization rate (depth of discharge, DODZn) of 68%, a steady cycle life up to 200 h is obtained for ultrathin Zn foils (20 μm). The superior rate capability and long-term cycle stability of Zn–MnO2 full cells further prove the effectiveness of Gly in stabilizing Zn anode. This work sheds light on additive designing from the specific roles of polar groups for AZIBs..
Nano-Micro Letters
- Publication Date: Aug. 28, 2023
- Vol. 15, Issue 1, 205 (2023)
Progress and Challenges Toward Effective Flexible Perovskite Solar Cells
Xiongjie Li, Haixuan Yu, Zhirong Liu, Junyi Huang, Xiaoting Ma, Yuping Liu, Qiang Sun, Letian Dai, Shahzada Ahmad, Yan Shen, and Mingkui Wang
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovThe demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs..
Nano-Micro Letters
- Publication Date: Aug. 31, 2023
- Vol. 15, Issue 1, 206 (2023)
Achieving Tunable Cold/Warm White-Light Emission in a Single Perovskite Material with Near-Unity Photoluminescence Quantum Yield
Bo Zhou, Aixuan Du, Dong Ding, Zexiang Liu, Ye Wang, Haizhe Zhong, Henan Li, Hanlin Hu, and Yumeng Shi
Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications. This paper reports a novel zero-dimensional perovskite, Rb4CdCl6:Sn2+, Mn2+, which demonstrates exceptional white-light properties including adjustable correlated color temperature, high color renderiSingle materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications. This paper reports a novel zero-dimensional perovskite, Rb4CdCl6:Sn2+, Mn2+, which demonstrates exceptional white-light properties including adjustable correlated color temperature, high color rendering index of up to 85, and near-unity photoluminescence quantum yield of 99%. Using a co-doping strategy involving Sn2+ and Mn2+, cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and d-d transitions of the Sn2+ and Mn2+ centers in the Rb4CdCl6 host, respectively. Intriguingly, although Mn2+ ions doped in Rb4CdCl6 are difficult to excite, efficient Mn2+ emission can be realized through an ultra-high-efficient energy transfer between Sn2+ and Mn2+ via the formation of adjacent exchange-coupled Sn–Mn pairs. Benefiting from this efficient Dexter energy transfer process, the dual emission shares the same optimal excitation wavelengths of the Sn2+ centers and suppresses the non-radiative vibration relaxation significantly. Moreover, the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn2+ ions to the Sn–Mn pairs. This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material..
Nano-Micro Letters
- Publication Date: Aug. 31, 2023
- Vol. 15, Issue 1, 207 (2023)
Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges
Yuxin Gong, Bo Wang, Huaizheng Ren, Deyu Li, Dianlong Wang, Huakun Liu, and Shixue Dou
The last several years have witnessed the prosperous development of zinc-ion batteries (ZIBs), which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety. However, the reversibility and availability of this system are blighted by problems such as uncontrollable denThe last several years have witnessed the prosperous development of zinc-ion batteries (ZIBs), which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety. However, the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth, hydrogen evolution, and corrosion passivation on anode side. A functionally and structurally well-designed anode current collectors (CCs) is believed as a viable solution for those problems, with a lack of summarization according to its working mechanisms. Herein, this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs, which can be divided into zincophilic modification, structural design, and steering the preferred crystal facet orientation. The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs..
Nano-Micro Letters
- Publication Date: Aug. 31, 2023
- Vol. 15, Issue 1, 208 (2023)
Zinc–Bromine Rechargeable Batteries: From Device Configuration, Electrochemistry, Material to Performance Evaluation
Norah S. Alghamdi, Masud Rana, Xiyue Peng, Yongxin Huang, Jaeho Lee, Jingwei Hou, Ian R. Gentle, Lianzhou Wang, and Bin Luo
Zinc–bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the eZinc–bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs..
Nano-Micro Letters
- Publication Date: Aug. 31, 2023
- Vol. 15, Issue 1, 209 (2023)
Dual-Doped Nickel Sulfide for Electro-Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel
Zhijie Chen, Renji Zheng, Teng Bao, Tianyi Ma, Wei Wei, Yansong Shen, and Bing-Jie Ni
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiencyElectro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni3S2 (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm-2). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h-1 in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production..
Nano-Micro Letters
- Publication Date: Sep. 11, 2023
- Vol. 15, Issue 1, 210 (2023)
Precise Detection, Control and Synthesis of Chiral Compounds at Single-Molecule Resolution
Chen Yang, Weilin Hu, and Xuefeng Guo
Chirality, as the symmetric breaking of molecules, plays an essential role in physical, chemical and especially biological processes, which highlights the accurate distinction among heterochiralities as well as the precise preparation for homochirality. To this end, the well-designed structure-specific recognizer and cChirality, as the symmetric breaking of molecules, plays an essential role in physical, chemical and especially biological processes, which highlights the accurate distinction among heterochiralities as well as the precise preparation for homochirality. To this end, the well-designed structure-specific recognizer and catalysis reactor are necessitated, respectively. However, each kind of target molecules requires a custom-made chiral partner and the dynamic disorder of spatial-orientation distribution of molecules at the ensemble level leads to an inefficient protocol. In this perspective article, we developed a universal strategy capable of realizing the chirality detection and control by the external symmetry breaking based on the alignment of the molecular frame to external stimuli. Specifically, in combination with the discussion about the relationship among the chirality (molecule), spin (electron) and polarization (photon), i.e., the three natural symmetry breaking, single-molecule junctions were proposed to achieve a single-molecule/event-resolved detection and synthesis. The fixation of the molecular orientation and the CMOS-compatibility provide an efficient interface to achieve the external input of symmetry breaking. This perspective is believed to offer more efficient applications in accurate chirality detection and precise asymmetric synthesis via the close collaboration of chemists, physicists, materials scientists, and engineers..
Nano-Micro Letters
- Publication Date: Sep. 12, 2023
- Vol. 15, Issue 1, 211 (2023)
Adsorption Site Regulations of [W–O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density
Ge Meng, Ziwei Chang, Libo Zhu, Chang Chen, Yafeng Chen, Han Tian, Wenshu Luo, Wenping Sun, Xiangzhi Cui, and Jianlin Shi
Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction betweHydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W–O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm-2) and HzOR (78.99 mV at 10,00 mA cm-2) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm-2. The introduction of [W–O] groups, working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W–O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H2 production system has been assembled, realizing H2 evolution at a rate of 3.53 mmol cm-2 h-1 at room temperature without external electricity supply..
Nano-Micro Letters
- Publication Date: Sep. 14, 2023
- Vol. 15, Issue 1, 212 (2023)
Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future
Maryam Chafiq, Abdelkarim Chaouiki, and Young Gun Ko
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal–organic frameworks, covalent organic frameworks,Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal–organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category..
Nano-Micro Letters
- Publication Date: Sep. 22, 2023
- Vol. 15, Issue 1, 213 (2023)
Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation
Zhen Yu, Yuqing Su, Ruonan Gu, Wei Wu, Yangxi Li, and Shaoan Cheng
Interfacial solar evaporation holds great promise to address the freshwater shortage. However, most interfacial solar evaporators are always filled with water throughout the evaporation process, thus bringing unavoidable heat loss. Herein, we propose a novel interfacial evaporation structure based on the micro–nano watInterfacial solar evaporation holds great promise to address the freshwater shortage. However, most interfacial solar evaporators are always filled with water throughout the evaporation process, thus bringing unavoidable heat loss. Herein, we propose a novel interfacial evaporation structure based on the micro–nano water film, which demonstrates significantly improved evaporation performance, as experimentally verified by polypyrrole- and polydopamine-coated polydimethylsiloxane sponge. The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m-2 h-1 under 1 sun by fine-tuning the interfacial micro–nano water film. Then, a homemade device with an enhanced condensation function is engineered for outdoor clean water production. Throughout a continuous test for 40 days, this device demonstrates a high water production rate (WPR) of 15.9–19.4 kg kW-1 h-1 m-2. Based on the outdoor outcomes, we further establish a multi-objective model to assess the global WPR. It is predicted that a 1 m2 device can produce at most 7.8 kg of clean water per day, which could meet the daily drinking water needs of 3 people. Finally, this technology could greatly alleviate the current water and energy crisis through further large-scale applications..
Nano-Micro Letters
- Publication Date: Sep. 22, 2023
- Vol. 15, Issue 1, 214 (2023)
Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
Suting Weng, Gaojing Yang, Simeng Zhang, Xiaozhi Liu, Xiao Zhang, Zepeng Liu, Mengyan Cao, Mehmet Nurullah Ateş, Yejing Li, Liquan Chen, Zhaoxiang Wang, and Xuefeng Wang
Fast-charging lithium-ion batteries are highly required, especially in reducing the mileage anxiety of the widespread electric vehicles. One of the biggest bottlenecks lies in the sluggish kinetics of the Li+ intercalation into the graphite anode; slow intercalation will lead to lithium metal plating, severe side reactFast-charging lithium-ion batteries are highly required, especially in reducing the mileage anxiety of the widespread electric vehicles. One of the biggest bottlenecks lies in the sluggish kinetics of the Li+ intercalation into the graphite anode; slow intercalation will lead to lithium metal plating, severe side reactions, and safety concerns. The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li+ intercalation. Herein, we compare the Li+ diffusion through the graphite particle, interface, and electrode, uncover the structure of the lithiated graphite at high current densities, and correlate them with the reaction kinetics and electrochemical performances. It is found that the rate-determining steps are highly dependent on the particle size, interphase property, and electrode configuration. Insufficient Li+ diffusion leads to high polarization, incomplete intercalation, and the coexistence of several staging structures. Interfacial Li+ diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10 μm. The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase. Our findings enrich the understanding of the graphite structural evolution during rapid Li+ intercalation, decipher the bottleneck for the sluggish reaction kinetics, and provide strategic guidelines to boost the fast-charging performance of graphite anode..
Nano-Micro Letters
- Publication Date: Sep. 22, 2023
- Vol. 15, Issue 1, 215 (2023)
Artificial Macrophage with Hierarchical Nanostructure for Biomimetic Reconstruction of Antitumor Immunity
Henan Zhao, Renyu Liu, Liqiang Wang, Feiying Tang, Wansong Chen, and You-Nian Liu
Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treArtificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treatment, the deficiency of immunoactive macrophages results in tumor progression and immune resistance. To overcome the limitation, a BaSO4@ZIF-8/transferrin (TRF) nanomacrophage (NMΦ) is herein constructed as an alternative to immunoactive macrophages. Alike to natural immunoactive macrophages, NMΦ is stably retained in tumors through the specific affinity of TRF to tumor cells. Zn2+ as an “artificial cytokine” is then released from the ZIF-8 layer of NMΦ under tumor microenvironment. Similar as proinflammatory cytokines, Zn2+ can trigger cell anoikis to expose tumor antigens, which are selectively captured by the BaSO4 cavities. Therefore, the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity. As a proof-of-concept, the NMΦ mimics the biological functions of macrophage, including tumor residence, cytokine release, antigen capture and immune activation, which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells..
Nano-Micro Letters
- Publication Date: Sep. 22, 2023
- Vol. 15, Issue 1, 216 (2023)
Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution
Bingjie Hu, Kai Huang, Bijun Tang, Zhendong Lei, Zeming Wang, Huazhang Guo, Cheng Lian, Zheng Liu, and Liang Wang
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bThe hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials..
Nano-Micro Letters
- Publication Date: Sep. 28, 2023
- Vol. 15, Issue 1, 217 (2023)
MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime
Wenyan Qiao, Linglin Zhou, Zhihao Zhao, Peiyuan Yang, Di Liu, Xiaoru Liu, Jiaqi Liu, Dongyang Liu, Zhong Lin Wang, and Jie Wang
Tribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well asTribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well as lifetime. Here, we employ MXene solution as lubricate to improve output current density and lifetime of TVNG simultaneously, where a high value of 754 mA m-2 accompanied with a record durability of 90,000 cycles were achieved. By comparing multiple liquid lubricates with different polarity, we show that conductive polar liquid with MXene as additive plays a crucial role in enhancing the electrical output performance and durability of TVNG. Moreover, the universality of MXene solution is well demonstrated in various TVNGs with Cu and P-type Si, and Cu and N-GaAs as material pairs. This work may guide and accelerates the practical application of TVNG in future..
Nano-Micro Letters
- Publication Date: Oct. 07, 2023
- Vol. 15, Issue 1, 218 (2023)
Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO2 Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage
Yiwei Wang, Yuxiao Zhang, Ge Gao, Yawen Fan, Ruoxin Wang, Jie Feng, Lina Yang, Alan Meng, Jian Zhao, and Zhenjiang Li
In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performanceIn recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like δ-MnO2 nanostructure and effectively modulate the vacancy defects to reach the optimal level (δ-MnO2-x-2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption–desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated δ-MnO2-x-2.0 cathode to present a large specific capacity of 551.8 mAh g-1 at 0.5 A g-1, high-rate capability of 262.2 mAh g-1 at 10 A g-1 and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the δ-MnO2-x-2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials..
Nano-Micro Letters
- Publication Date: Oct. 07, 2023
- Vol. 15, Issue 1, 219 (2023)
Initiating Binary Metal Oxides Microcubes Electromagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation
Fushan Li, Nannan Wu, Hideo Kimura, Yuan Wang, Ben Bin Xu, Ding Wang, Yifan Li, Hassan Algadi, Zhanhu Guo, Wei Du, and Chuanxin Hou
Cobalt nickel bimetallic oxides (NiCo2O4) have received numerous attentions in terms of their controllable morphology, high temperature, corrosion resistance and strong electromagnetic wave (EMW) absorption capability. However, broadening the absorption bandwidth is still a huge challenge for NiCo2O4-based absorbers. HCobalt nickel bimetallic oxides (NiCo2O4) have received numerous attentions in terms of their controllable morphology, high temperature, corrosion resistance and strong electromagnetic wave (EMW) absorption capability. However, broadening the absorption bandwidth is still a huge challenge for NiCo2O4-based absorbers. Herein, the unique NiCo2O4@C core–shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy. The concentration of oxygen vacancies and morphologies of the three-dimensional (3D) cubic hollow core–shell NiCo2O4@C framework were effectively optimized by adjusting the calcination temperature. The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components, generating significant interfacial polarization losses. Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves. The optimized NiCo2O4@C hollow microcubes exhibit superior EMW absorption capability with minimum RL (RLmin) of -84.45 dB at 8.4 GHz for the thickness of 3.0 mm. Moreover, ultrabroad effective absorption bandwidth (EAB) as large as 12.48 GHz (5.52–18 GHz) is obtained. This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability, especially in broadening effective absorption bandwidth..
Nano-Micro Letters
- Publication Date: Oct. 09, 2023
- Vol. 15, Issue 1, 220 (2023)
Humanoid Intelligent Display Platform for Audiovisual Interaction and Sound Identification
Yang Wang, Wenli Gao, Shuo Yang, Qiaolin Chen, Chao Ye, Hao Wang, Qiang Zhang, Jing Ren, Zhijun Ning, Xin Chen, Zhengzhong Shao, Jian Li, Yifan Liu, and Shengjie Ling
This study proposes a rational strategy for the design, fabrication and system integration of the humanoid intelligent display platform (HIDP) to meet the requirements of highly humanized mechanical properties and intelligence for human–machine interfaces. The platform's sandwich structure comprises a middle light-This study proposes a rational strategy for the design, fabrication and system integration of the humanoid intelligent display platform (HIDP) to meet the requirements of highly humanized mechanical properties and intelligence for human–machine interfaces. The platform's sandwich structure comprises a middle light-emitting layer and surface electrodes, which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer, respectively. Both materials are highly stretchable and resilient, endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations. Furthermore, by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation, the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things (IoT) and machine learning techniques. The accuracy of species identification reaches about 100% for 200 rounds of random testing. Additionally, the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics, displaying real-time results with an accuracy of approximately 99% and 93%, respectively. In sum, this study offers a rational route to designing intelligent display devices for audiovisual interaction, which can expedite the application of smart display devices in human–machine interaction, soft robotics, wearable sound-vision system and medical devices for hearing-impaired patients..
Nano-Micro Letters
- Publication Date: Oct. 09, 2023
- Vol. 15, Issue 1, 221 (2023)
High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation
Yao Gao, Lei Fan, Rui Zhou, Xiaoqiong Du, Zengbao Jiao, and Biao Zhang
Si is a promising anode material for Li ion batteries because of its high specific capacity, abundant reserve, and low cost. However, its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process. The high stress induced by the Li concentration gSi is a promising anode material for Li ion batteries because of its high specific capacity, abundant reserve, and low cost. However, its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process. The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles. Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles, which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process. The Si8.5Sn0.5Sb microparticles (mean particle size: 8.22 μm) show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles, respectively. The discharge capacities of the Si8.5Sn0.5Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g-1 are 1.62 and 1.19 Ah g-1, respectively, corresponding to a retention rate of 94.2% and 99.6%, respectively, relative to the capacity of the first cycle after activation. Multicomponent microparticle anodes containing Si, Sn, Sb, Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02% per cycle for 1000 cycles at 1 A g-1, corroborating the proposed mechanism. The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy–density Li-ion batteries..
Nano-Micro Letters
- Publication Date: Oct. 09, 2023
- Vol. 15, Issue 1, 222 (2023)
Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity
Tao Yang, Yan-Hui Chen, Ya-Chao Wang, Wei Ou, Lei-Ying Ying, Yang Mei, Ai-Qin Tian, Jian-Ping Liu, Hao-Chung Guo, and Bao-Ping Zhang
Room temperature low threshold lasing of green GaN-based vertical cavity surface emitting laser (VCSEL) was demonstrated under continuous wave (CW) operation. By using self-formed InGaN quantum dots (QDs) as the active region, the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm-2, the lowest evRoom temperature low threshold lasing of green GaN-based vertical cavity surface emitting laser (VCSEL) was demonstrated under continuous wave (CW) operation. By using self-formed InGaN quantum dots (QDs) as the active region, the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm-2, the lowest ever reported. The QD epitaxial wafer featured with a high IQE of 69.94% and the δ-function-like density of states plays an important role in achieving low threshold current. Besides, a short cavity of the device (~ 4.0 λ) is vital to enhance the spontaneous emission coupling factor to 0.094, increase the gain coefficient factor, and decrease the optical loss. To improve heat dissipation, AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding. The results provide important guidance to achieving high performance GaN-based VCSELs..
Nano-Micro Letters
- Publication Date: Oct. 09, 2023
- Vol. 15, Issue 1, 223 (2023)
Correction: Monodomain Liquid Crystals of Two-Dimensional Sheets by Boundary-Free Sheargraphy
Min Cao, Senping Liu, Qingli Zhu, Ya Wang, Jingyu Ma, Zeshen Li, Dan Chang, Enhui Zhu, Xin Ming, Florian Puchtler, Josef Breu, Ziliang Wu, Yingjun Liu, Yanqiu Jiang, Zhen Xu, and Chao Gao
Nano-Micro Letters
- Publication Date: Oct. 13, 2023
- Vol. 15, Issue 1, 224 (2023)
Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene
Long Pan, Rongxiang Hu, Yuan Zhang, Dawei Sha, Xin Cao, Zhuoran Li, Yonggui Zhao, Jiangxiang Ding, Yaping Wang, and ZhengMing Sun
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3CExploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g-1 at 10 A g-1) and cycling stability (175.3 mAh g-1 after 4000 cycles at 3.0 A g-1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg-1) and power density (837.2 W kg-1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs..
Nano-Micro Letters
- Publication Date: Oct. 13, 2023
- Vol. 15, Issue 1, 225 (2023)
Temperature-Arousing Self-Powered Fire Warning E-Textile Based on p–n Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing
Hualing He, Yi Qin, Zhenyu Zhu, Qing Jiang, Shengnan Ouyang, Yuhang Wan, Xueru Qu, Jie Xu, and Zhicai Yu
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission. A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fFirefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission. A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground. However, it is still a challenge to facilely design and manufacture thermoelectric (TE) textile (TET)-based fire warning electronics with dynamic surface conformability and breathability. Here, we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti3C2Tx MXene and p-type MXene/SWCNT-COOH as core materials, and tough aramid nanofiber as protective shell, which simultaneously ensure the flexibility and high-efficiency TE power generation. With such alternating p/n-type TE fibers, TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p–n segment TE fibers into aramid fabric. The results indicate that TET-based fire warning electronics containing 50 p–n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300 °C. The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature. The fire alarm response time and flame-retardant properties are further displayed. Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement, demonstrating their potential application in firefighting clothing..
Nano-Micro Letters
- Publication Date: Oct. 13, 2023
- Vol. 15, Issue 1, 226 (2023)
Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction
Jin Li, Naiteng Wu, Jian Zhang, Hong-Hui Wu, Kunming Pan, Yingxue Wang, Guilong Liu, Xianming Liu, Zhenpeng Yao, and Qiaobao Zhang
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brEfficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research..
Nano-Micro Letters
- Publication Date: Oct. 13, 2023
- Vol. 15, Issue 1, 227 (2023)
Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review
Linjie Zhang, Na Jin, Yibing Yang, Xiao-Yong Miao, Hua Wang, Jun Luo, and Lili Han
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with veSingle-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis..
Nano-Micro Letters
- Publication Date: Oct. 13, 2023
- Vol. 15, Issue 1, 228 (2023)
Fast and Stable Zinc Anode-Based Electrochromic Displays Enabled by Bimetallically Doped Vanadate and Aqueous Zn2+/Na+ Hybrid Electrolytes
Zhaoyang Song, Bin Wang, Wu Zhang, Qianqian Zhu, Abdulhakem Y. Elezzabi, Linhua Liu, William W. Yu, and Haizeng Li
Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics. However, the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications. Herein, novel strategies are developed to desVanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics. However, the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications. Herein, novel strategies are developed to design electrochemically stable vanadates having rapid switching times. We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum ions into V3O8 interlayers, which facilitates the transportation of cations and enhances the electrochemical kinetics. In addition, a hybrid Zn2+/Na+ electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics. As a result, our electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays. It is envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon..
Nano-Micro Letters
- Publication Date: Oct. 17, 2023
- Vol. 15, Issue 1, 229 (2023)
p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications
Lei Tang, and Jingyun Zou
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the lTwo-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top–down and bottom–up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics..
Nano-Micro Letters
- Publication Date: Oct. 18, 2023
- Vol. 15, Issue 1, 230 (2023)
NH3-Induced In Situ Etching Strategy Derived 3D-Interconnected Porous MXene/Carbon Dots Films for High Performance Flexible Supercapacitors
Yongbin Wang, Ningjun Chen, Bin Zhou, Xuefeng Zhou, Ben Pu, Jia Bai, Qi Tang, Yan Liu, and Weiqing Yang
2D MXene (Ti3CNTx) has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity, ultra-high capacitance, and excellent flexibility. However, it suffers from a severe restacking problem during the electrode fabrication process, limiting the ion transport ki2D MXene (Ti3CNTx) has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity, ultra-high capacitance, and excellent flexibility. However, it suffers from a severe restacking problem during the electrode fabrication process, limiting the ion transport kinetics and the accessibility of ions in the electrodes, especially in the direction normal to the electrode surface. Herein, we report a NH3-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots (p-MC) films for high-performance flexible supercapacitor. The pre-intercalated carbon dots (CDs) first prevent the restacking of MXene to expose more inner electrochemical active sites. The partially decomposed CDs generate NH3 for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films. Benefiting from the structural merits and the 3D-interconnected ionic transmission channels, p-MC film electrodes achieve excellent gravimetric capacitance (688.9 F g-1 at 2 A g-1) and superior rate capability. Moreover, the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability, demonstrating the great promise of p-MC electrode for practical applications..
Nano-Micro Letters
- Publication Date: Oct. 18, 2023
- Vol. 15, Issue 1, 231 (2023)
Engineering Fe-N4 Electronic Structure with Adjacent Co-N2C2 and Co Nanoclusters on Carbon Nanotubes for Efficient Oxygen Electrocatalysis
Mingjie Wu, Xiaohua Yang, Xun Cui, Ning Chen, Lei Du, Mohamed Cherif, Fu-Kuo Chiang, Yuren Wen, Amir Hassanpour, François Vidal, Sasha Omanovic, Yingkui Yang, Shuhui Sun, and Gaixia Zhang
Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structureRegulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structure with adjacent Co-N2C2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M–N–C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M–N–C catalysts..
Nano-Micro Letters
- Publication Date: Oct. 20, 2023
- Vol. 15, Issue 1, 232 (2023)
A Broad Range Triboelectric Stiffness Sensor for Variable Inclusions Recognition
Ziyi Zhao, Zhentan Quan, Huaze Tang, Qinghao Xu, Hongfa Zhao, Zihan Wang, Ziwu Song, Shoujie Li, Ishara Dharmasena, Changsheng Wu, and Wenbo Ding
With the development of artificial intelligence, stiffness sensors are extensively utilized in various fields, and their integration with robots for automated palpation has gained significant attention. This study presents a broad range self-powered stiffness sensor based on the triboelectric nanogenerator (Stiff-TENG)With the development of artificial intelligence, stiffness sensors are extensively utilized in various fields, and their integration with robots for automated palpation has gained significant attention. This study presents a broad range self-powered stiffness sensor based on the triboelectric nanogenerator (Stiff-TENG) for variable inclusions in soft objects detection. The Stiff-TENG employs a stacked structure comprising an indium tin oxide film, an elastic sponge, a fluorinated ethylene propylene film with a conductive ink electrode, and two acrylic pieces with a shielding layer. Through the decoupling method, the Stiff-TENG achieves stiffness detection of objects within 1.0 s. The output performance and characteristics of the TENG for different stiffness objects under 4 mm displacement are analyzed. The Stiff-TENG is successfully used to detect the heterogeneous stiffness structures, enabling effective recognition of variable inclusions in soft object, reaching a recognition accuracy of 99.7%. Furthermore, its adaptability makes it well-suited for the detection of pathological conditions within the human body, as pathological tissues often exhibit changes in the stiffness of internal organs. This research highlights the innovative applications of TENG and thereby showcases its immense potential in healthcare applications such as palpation which assesses pathological conditions based on organ stiffness..
Nano-Micro Letters
- Publication Date: Oct. 20, 2023
- Vol. 15, Issue 1, 233 (2023)
Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries
Zhenglu Zhu, Xiaohui Li, Xiaoqun Qi, Jie Ji, Yongsheng Ji, Ruining Jiang, Chaofan Liang, Dan Yang, Ze Yang, Long Qie, and Yunhui Huang
Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)bLithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and “dead” Li) during cycling. It is found that the accumulation of both SEI Li+ and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs..
Nano-Micro Letters
- Publication Date: Oct. 24, 2023
- Vol. 15, Issue 1, 234 (2023)
In Situ Formed Tribofilms as Efficient Organic/Inorganic Hybrid Interlayers for Stabilizing Lithium Metal Anodes
Shaozhen Huang, Kecheng Long, Yuejiao Chen, Tuoya Naren, Piao Qing, Xiaobo Ji, Weifeng Wei, Zhibin Wu, and Libao Chen
The practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, The practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, a robust organic/inorganic hybrid interlayer (lithiophilic LiF/LiC6 framework hybridized -CF2-O-CF2- chains) was formed atop Li metal. The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface. The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h (1.0 mA cm-2 and 1.0 mAh cm-2) and 1,350 cycles even at a harsh condition (18.0 mA cm-2 and 3.0 mAh cm-2). When paired with high-loading LiFePO4 cathodes, the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%. This work provides a new friction-induced strategy for producing high-performance thin LMAs..
Nano-Micro Letters
- Publication Date: Oct. 24, 2023
- Vol. 15, Issue 1, 235 (2023)
Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment
Ziyi Guo, Chenchen Zhuang, Yihang Song, Joel Yong, Yi Li, Zhong Guo, Biao Kong, John M. Whitelock, Joseph Wang, and Kang Liang
Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transpAutonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal–organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to “find-and-fetch” target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment..
Nano-Micro Letters
- Publication Date: Oct. 24, 2023
- Vol. 15, Issue 1, 236 (2023)
Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries
Jingjing Li, Zhexuan Liu, Shaohua Han, Peng Zhou, Bingan Lu, Jianda Zhou, Zhiyuan Zeng, Zhizhao Chen, and Jiang Zhou
Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices, raising higher requirements on the battery biocompatibility, high safety, low cost, and excellent electrochemical performance, which become the evaluation criteria toward developing feasiblBiocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices, raising higher requirements on the battery biocompatibility, high safety, low cost, and excellent electrochemical performance, which become the evaluation criteria toward developing feasible biocompatible batteries. Herein, through conducting the battery implantation tests and leakage scene simulations on New Zealand rabbits, zinc sulfate electrolyte is proved to exhibit higher biosecurity and turns out to be one of the ideal zinc salts for biocompatible zinc-ion batteries (ZIBs). Furthermore, in order to mitigate the notorious dendrite growth and hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability, Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential. Finally, a long lifetime of 1500 h for the symmetrical cell, the specific capacity of 150 mAh g-1 under 0.5 A g-1 for the Zn–MnO2 battery and 212 mAh g-1 under 5 A g-1 for the Zn—NH4V4O10 battery are obtained. This work may provide unique perspectives on biocompatible ZIBs toward the biosecurity of their cell components..
Nano-Micro Letters
- Publication Date: Oct. 26, 2023
- Vol. 15, Issue 1, 237 (2023)
Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio
Minhan Li, Fangzhou Zhang, Min Kuang, Yuanyuan Ma, Ting Liao, Ziqi Sun, Wei Luo, Wan Jiang, and Jianping Yang
Electrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantlElectrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO2 electrochemical reduction reaction (CO2RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C3N4) as the active sites for CO2-to-CH4 conversion in CO2RR. By regulating the coordination and density of Cu sites in g-C3N4, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH4 Faraday efficiency of 49.04% and produces the products with a high CH4/C2H4 ratio over 9. This work provides the first experimental study on g-C3N4-supported single Cu atom catalyst for efficient CH4 production from CO2RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO2RR by engineering Cu active sites in 2D materials with porous crystal structures..
Nano-Micro Letters
- Publication Date: Oct. 26, 2023
- Vol. 15, Issue 1, 238 (2023)
Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds
Xiaoyu Han, Qimanguli Saiding, Xiaolu Cai, Yi Xiao, Peng Wang, Zhengwei Cai, Xuan Gong, Weiming Gong, Xingcai Zhang, and Wenguo Cui
Blood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, maiBlood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, mainly including but not limited to 3D printing, but also 4D printing, 5D printing and 6D printing. It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds. Herein, the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue. Additionally, the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories: functional vascularized 3D printed scaffolds, cell-based vascularized 3D printed scaffolds, vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds. Finally, a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering, cardiovascular system, skeletal muscle, soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented..
Nano-Micro Letters
- Publication Date: Oct. 31, 2023
- Vol. 15, Issue 1, 239 (2023)
Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding
Yue Liu, Yadi Wang, Na Wu, Mingrui Han, Wei Liu, Jiurong Liu, and Zhihui Zeng
There is an urgent demand for flexible, lightweight, mechanically robust, excellent electromagnetic interference (EMI) shielding materials. Two-dimensional (2D) transition metal carbides/nitrides (MXenes) have been potential candidates for the construction of excellent EMI shielding materials due to their great electriThere is an urgent demand for flexible, lightweight, mechanically robust, excellent electromagnetic interference (EMI) shielding materials. Two-dimensional (2D) transition metal carbides/nitrides (MXenes) have been potential candidates for the construction of excellent EMI shielding materials due to their great electrical electroconductibility, favorable mechanical nature such as flexibility, large aspect ratios, and simple processability in aqueous media. The applicability of MXenes for EMI shielding has been intensively explored; thus, reviewing the relevant research is beneficial for advancing the design of high-performance MXene-based EMI shields. Herein, recent progress in MXene-based macrostructure development is reviewed, including the associated EMI shielding mechanisms. In particular, various structural design strategies for MXene-based EMI shielding materials are highlighted and explored. In the end, the difficulties and views for the future growth of MXene-based EMI shields are proposed. This review aims to drive the growth of high-performance MXene-based EMI shielding macrostructures on basis of rational structural design and the future high-efficiency utilization of MXene..
Nano-Micro Letters
- Publication Date: Nov. 02, 2023
- Vol. 15, Issue 1, 240 (2023)
Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors
Hairui Bai, Ruijie Ma, Wenyan Su, Top Archie Dela Peña, Tengfei Li, Lingxiao Tang, Jie Yang, Bin Hu, Yilin Wang, Zhaozhao Bi, Yueling Su, Qi Wei, Qiang Wu, Yuwei Duan, Yuxiang Li, Jiaying Wu, Zicheng Ding, Xunfan Liao, Yinjuan Huang, Chao Gao, Guanghao Lu, Mingjie Li, Weiguo Zhu, Gang Li, Qunping Fan, and Wei Ma
Power-conversion-efficiencies (PCEs) of organic solar cells (OSCs) in laboratory, normally processed by spin-coating technology with toxic halogenated solvents, have reached over 19%. However, there is usually a marked PCE drop when the blade-coating and/or green-solvents toward large-scale printing are used instead, wPower-conversion-efficiencies (PCEs) of organic solar cells (OSCs) in laboratory, normally processed by spin-coating technology with toxic halogenated solvents, have reached over 19%. However, there is usually a marked PCE drop when the blade-coating and/or green-solvents toward large-scale printing are used instead, which hampers the practical development of OSCs. Here, a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused end-group. Thanks to the N-alkyl engineering, NIR-absorbing YR-SeNF series show different crystallinity, packing patterns, and miscibility with polymeric donor. The studies exhibit that the molecular packing, crystallinity, and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains, providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YR-SeNF-based OSCs. As a result, a record-high PCE approaching 19% is achieved in the blade-coating OSCs fabricated from a green-solvent o-xylene with high-boiling point. Notably, ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep > 80% of the initial PCEs for even over 400 h. Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs, which paves a way for industrial development..
Nano-Micro Letters
- Publication Date: Nov. 02, 2023
- Vol. 15, Issue 1, 241 (2023)