
Search by keywords or author
Journals >Opto-Electronic Science
Export citation format
Research Articles
Tailoring temperature response for a multimode fiber
Han Gao, Haifeng Hu, and Qiwen Zhan
This work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations between output fields in the presence of environmental temperature fluctuations. Using experimentally measured multi-temperature transmission matrix, a set of temperature principal modes that exhibit reThis work introduces special states for light in multimode fibers featuring strongly enhanced or reduced correlations between output fields in the presence of environmental temperature fluctuations. Using experimentally measured multi-temperature transmission matrix, a set of temperature principal modes that exhibit resilience to disturbances caused by temperature fluctuations can be generated. Reversing this concept also allows the construction of temperature anti-principal modes, with output profiles more susceptible to temperature influences than the unmodulated wavefront. Despite changes in the length of the multimode fiber within the temperature-fluctuating region, the proposed approach remains capable of robustly controlling the temperature response within the fiber. To illustrate the practicality of the proposed special state, a learning-empowered fiber specklegram temperature sensor based on temperature anti-principal mode sensitization is proposed. This sensor exhibits outstanding superiority over traditional approaches in terms of resolution and accuracy. These novel states are anticipated to have wide-ranging applications in fiber communication, sensing, imaging, and spectroscopy, and serve as a source of inspiration for the discovery of other novel states..
Opto-Electronic Science
- Publication Date: Jan. 15, 2025
- Vol. 4, Issue 1, 240004 (2025)
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu... and Lei Zhou|Show fewer author(s)
On-chip devices for generating pre-designed vectorial optical fields (VOFs) under surface wave (SW) excitations are highly desired in integrated photonics. However, conventional devices are usually of large footprints, low efficiencies, and limited wave-control capabilities. Here, we present a generic approach to desigOn-chip devices for generating pre-designed vectorial optical fields (VOFs) under surface wave (SW) excitations are highly desired in integrated photonics. However, conventional devices are usually of large footprints, low efficiencies, and limited wave-control capabilities. Here, we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations, and experimentally verify the concept in terahertz (THz) regime. We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams, and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with opposite circular polarizations, respectively. We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces, which, under SW excitations, can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference. As a proof of concept, we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excitation at ~0.4 THz. Experimental results agree well with full-wave simulations, collectively verifying the performance of our device. Our study paves the road to realizing highly integrated on-chip functional THz devices, which may find many applications in biological sensing, communications, displays, image multiplexing, and beyond..
Opto-Electronic Science
- Publication Date: Jan. 15, 2025
- Vol. 4, Issue 1, 240024 (2025)