• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210006 (2023)
Jiaming Liang, Shen Yang*, and Lifan Tian
Author Affiliations
  • School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • show less
    DOI: 10.3788/LOP212636 Cite this Article Set citation alerts
    Jiaming Liang, Shen Yang, Lifan Tian. Infrared and Visible Image Fusion Based on Image Enhancement and Rolling Guidance Filtering[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210006 Copy Citation Text show less
    References

    [1] Goshtasby A A, Nikolov S. Image fusion: advances in the state of the art[J]. Information Fusion, 8, 114-118(2007).

    [2] Ma J Y, Ma Y, Li C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 45, 153-178(2019).

    [3] Ma J Y, Yu W, Liang P W et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).

    [4] Zhang Y, Liu Y, Sun P et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 54, 99-118(2020).

    [5] Li G F, Lin Y J, Qu X D. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 71, 109-129(2021).

    [6] Sun J G, Han Q L, Kou L et al. Multi-focus image fusion algorithm based on Laplacian Pyramids[J]. Journal of the Optical Society of America A, 35, 480-490(2018).

    [7] Petrović V S, Xydeas C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 13, 228-237(2004).

    [8] Panchotiya B, Patel R, Israni D. An efficient image fusion of visible and infrared band images using integration of anisotropic diffusion and discrete wavelet transform[J]. Journal of Communications Software and Systems, 16, 30-36(2020).

    [9] Guo L Q, Dai M, Zhu M. Multifocus color image fusion based on quaternion curvelet transform[J]. Optics Express, 20, 18846-18860(2012).

    [10] Wei R R, Zhu D P, Zhan W D et al. Infrared and visible image fusion based on RPCA and NSST[J]. International Journal of Remote Sensing, 35, 1640-1652(2014).

    [11] Li H, Liu L, Huang W et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Infrared Physics & Technology, 74, 28-37(2016).

    [12] Su J F, Zhang G C, Wang K. Compressed fusion of infrared and visible images combining robust principal component analysis and non-subsampled contour transform[J]. Laser & Optoelectronics Progress, 57, 041005(2020).

    [13] Zhao C, Huang Y D. Infrared and visible image fusion via rolling guidance filtering and hybrid multi-scale decomposition[J]. Laser & Optoelectronics Progress, 56, 141007(2019).

    [14] Li S T, Kang X D, Hu J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 22, 2864-2875(2013).

    [15] Zhou Z Q, Wang B, Li S et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 30, 15-26(2016).

    [16] Jiang Z T, Wu H, Zhou X L. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 38, 0210002(2018).

    [17] Zhang Q, Shen X Y, Xu L et al. Rolling guidance filter[M]. Fleet D, Pajdla T, Schiele B, et al. Computer Vision-ECCV 2014. Lecture notes in computer science, 8691, 815-830(2014).

    [18] Pei P P, Yang Y C, Dang J W et al. Infrared and visible image fusion method based on rolling guidance filter and convolution sparse representation[J]. Laser & Optoelectronics Progress, 59, 1210001(2022).

    [19] Zhou Z Q, Dong M J, Xie X Z et al. Fusion of infrared and visible images for night-vision context enhancement[J]. Applied Optics, 55, 6480-6490(2016).

    [20] Achanta R, Hemami S, Estrada F et al. Frequency-tuned salient region detection[C], 1597-1604(2009).

    [21] Liu Y, Liu S P, Wang Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 24, 147-164(2015).

    [22] Ma J L, Zhou Z Q, Wang B et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 82, 8-17(2017).

    [23] Zhang Y, Zhang L J, Bai X Z et al. Infrared and visual image fusion through infrared feature extraction and visual information preservation[J]. Infrared Physics & Technology, 83, 227-237(2017).

    [24] Li H, Wu X J. Infrared and visible image fusion using Latent Low-Rank Representation[EB/OL]. https://arxiv.org/abs/1804.08992

    [25] Bavirisetti D P, Xiao G, Zhao J H et al. Multi-scale guided image and video fusion: a fast and efficient approach[J]. Circuits, Systems, and Signal Processing, 38, 5576-5605(2019).

    [26] Liu Y, Chen X, Cheng J et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 16, 1850018(2018).

    [27] Li H, Wu X J, Kittler J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 73, 72-86(2021).

    [28] Li H, Wu X J, Kittler J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 29, 4733-4746(2020).

    Jiaming Liang, Shen Yang, Lifan Tian. Infrared and Visible Image Fusion Based on Image Enhancement and Rolling Guidance Filtering[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210006
    Download Citation