
- High Power Laser Science and Engineering
- Vol. 12, Issue 6, 06000e79 (2024)
Abstract
1 Introduction
High-intensity pulsed ion beams are widely used in material-surface engineering, such as surface modification[1], film growth[2] and nanopowder preparation[3], since they can melt, evaporate and ablate the material surface within a very short time[4]. Localized high-temperature and high-density colloidal plasmas can also be produced. The pulse duration of high-intensity ion beams from traditional methods (e.g., by using magnetically insulated ion diodes) is limited to
With advances in the chirped pulse[8] and related amplification technologies, the duration of intense laser pulses can be compressed to picoseconds and even femtoseconds. As short-pulse energy triggers, such laser pulses open up the possibility of generating pulsed ion beams as short as ps duration[9–13]. Short (
With novel spatiotemporal synchronization techniques, multiple fs laser beams have recently been used in experiments for improving wakefield electron injection[29] and harmonic generation[30]. The temporal and spatial locations of the laser beams can be controlled to within fs and μm precision by using a motorized stage[29]. That is, one can quite well control laser–plasma interactions involving multiple lasers. In this paper, we propose a scheme for generating high-flux angularly uniform energetic proton beams through target normal sheath acceleration (TNSA) by irradiating a microwire-hemisphere target with three fs laser pulses. Figure 1 is a sketch of the setup. In order to see the effect of the wire array and target curvature, four cases are considered.
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
Figure 1.Schematic of three laser beams irradiating a wire-hemisphere (left, TWH) target. Four other cases are considered: a single laser beam irradiating a wire-hemisphere (SWH) target, three laser beams irradiating a hemisphere (TH) target, a single laser beam irradiating a hemisphere (SH) target and a single laser beam irradiating a planar (SP) target. The total laser energy is the same in all the five cases.
2 Model and simulation parameters
To verify our scheme, we use the particle-in-cell (PIC) simulation code
Figure 2.(a) Evolution of the TNSA proton flux for the five cases in
and total number
, respectively, of the protons. (b) Angular distributions of the protons behind the targets at
. The blue dots and orange squares are for the averaged angular deviation
(i.e., the average angle between the momentum direction of each proton and its direction with respect to the target center) of all protons, as well as the standard deviation of the proton angular distribution
. For the SP case, the averaged angular deviation, standard deviation and proton number are divided by 2, 4 and 6, respectively. (c) Proton energy spectra at
. The proton temperatures (obtained from the gradients of the curves) are also given. (d) The maximum laser-to-proton (with energies higher than 0.5 MeV) energy conversion efficiency
for the five cases.
3 Results and discussion
We record the properties of the protons entering an imaginary (i.e., protons can pass through but not be reflected from it, and nothing happens inside) spherical sample of radius
Figure 3.(a) Hot-electron energy-density distributions in the region behind the wire-hemisphere structure at . The solid black curve shows a typical constant-energy-density contour relatively far away from its back surface. (b) Energy-density distribution of the wire electrons at
and
for the (b1), (b2) TWH and (b3), (b4) SWH cases, respectively. (c) Evolution of the total electron energy density in the hollow behind the targets. The red and yellow dashed curves are for the contribution of the wire electrons in the TWH and SWH cases. (d) Electron-energy spectra at
. The blue and black dashed curves show the spectra of the wire electrons in the TWH and SWH cases. The inset shows the electron energy spectra in the
(green and blue curves) and
(black and red curves) regions of panels (b2) and (b4) for the TWH and SWH cases. (e) Laser-to-electron energy conversion efficiencies. The overlapping inner bars in the TWH and SWH cases are those of the laser-to-wire electrons only, from which one can clearly see the effect of the wires.
Of interest is that the proton angular distribution in the TWH case is much more uniform than that of the TH case. This is because the most intense part of each beam is on the wires. That is, the wires act like a buffer for the Gaussian lasers, resulting in a significantly more uniform angular distribution of the light intensity. Angular uniformity of the protons can be described by two parameters, namely, the averaged angular deviation
Next we consider the causes for the uniform distribution of the generated high-flux proton beams. Figure 3(a) compares the energy-density distribution of the hot electrons behind the five targets at
Figure 4.(a) Distributions of the electric field strength behind the five targets at . The arrows show the electric field magnitudes and directions. (b) Profiles of the sheath electric field at a distance
perpendicular to the local target-rear surface. (c) Standard deviation of the sheath electric fields shown in (b).
Figure 5.Proton energy-density distribution in the circular region behind the five targets at .
Figure 4(a) is for the sheath electric field
It should be noted that the simulation is 2D, which tends to overestimate the hot-electron temperature, resulting in higher proton energy and flux[35,36]. Moreover, the longitudinal electric field of waveguide TM mode in the vacuum regions (no longer channels in three dimensions) between the wires could differ from that of two dimensions and can thus also affect the proton acceleration[33].
Figure 6.Dependence of the peak flux of protons on (a) the wire radius
, angle
between the two adjacent wires and (b) wire length
in the TWH case. The values (in units of
cm−2 s−1) marked in (a) are for
.
4 Parametric effects and experimental considerations
In the TWH case, the effect of proton acceleration is closely related to the geometric parameters of the wire array. Figure 6 shows the dependence of
Figure 7(a) shows the effect of the laser incident angle
For higher power laser pulses, it is necessary to consider the damage of the microstructure by the laser prepulses. To see the effect of the pre-expansion preplasma produced by the prepulse, we performed radiation hydrodynamic simulations using
Figure 7.(a), (c), (e) Angular distribution and (b), (d), (f) peak flux (left) and total number
(right) of the TNSA protons versus the laser incident angle
, misalignment
of the laser incident angle and transverse drift
of the focal spot. The panels on the far left are for
, with misalignment
and transverse drift
.
Figure 8.Results of radiation hydrodynamic simulations. (a) Density distribution of preplasma produced by the prepulse at different laser power , and its (b) angular and (c) radial profiles along the white lines in (a). The density is in logarithmic color scale and these data are extracted 3 ps before the peak of the main pulse arrived. The black curves in (a) are the contour of the overcritical region. The above density distributions from
and (e) angular distribution of protons on
both without and with preplasma from the simulation.
We now consider the effect of the laser power
5 Summary
A practical scheme of producing high-flux and angularly uniform proton acceleration using three laser beams interacting with a wire-hemisphere target is proposed and demonstrated by PIC simulations. The peak proton flux and angular uniformity are significantly better than that from the traditional methods. The scheme can be useful for creating warm dense plasma states that are relevant to laboratory astrophysics[43], as well as fundamental material property[14] and controlled fusion[44] research. It should, however, be mentioned that we have invoked ultrashort relativistic laser pulses with duration of approximately 33 fs and energy of approximately 0.16 J per beam. For applications such as proton-beam-driven fast ignition of ICF, the protons must deposit sufficient energy (10–20 kJ) in a hot spot to ignite the fuel[45]. That is, long-pulse (a few ps) high-energy (hundreds of kJ) lasers are required. With such high-energy picosecond laser pulses, even with high contrast, microstructures such as that used here would be rapidly filled with overcritical plasma[24] that could distort the proton acceleration.
References
[1] J. Piekoszewski, Z. Werner, W. Szymczyk. Vacuum, 63, 475(2001).
[2] G. E. Remnev, I. F. Isakov, M. S. Opekounov, G. I. Kotlyarevsky, V. L. Kutuzov, V. S. Lopatin, V. M. Matvienko, M. Yu. Ovsyagnikov, A. V. Potyomkin, V. A. Tarbokov. Surf. Coat. Technol., 96, 103(1997).
[3] D. J. Rej, H. A. Davis, J. C. Olson, G. E. Remnev, A. N. Zakoutaev, V. A. Ryzhkov, V. K. Struts, I. F. Isakov, V. A. Shulov, N. A. Nochevnaya, R. W. Stinnett, E. L. Neau, K. Yatsui, W. Jiang. J. Vac. Sci. Technol. A, 15, 1089(1997).
[4] X. Y. Le, S. Yan, W. J. Zhao, B. X. Han, Y. G. Wang, J. M. Xue. Surf. Coat. Technol., 128, 381(2000).
[5] M. Koenig, A. Benuzzi-Mounaix, A. Ravasio, T. Vinci, N. Ozaki, S. Lepape, D. Batani, G. Huser, T. Hall, D. Hicks, A. MacKinnon, P. Patel, H. S. Park, T. Boehly, M. Borghesi, S. Kar, L. Romagnani. Plasma Phys. Controll. Fusion, 47, B441(2005).
[6] A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey et al. Nature, 601, 542(2022).
[7] D. H. H. Hoffmann, V. E. Fortov, I. V. Lomonosov, V. Mintsev, N. A. Tahir, D. Varentsov, J. Wieser. Phys. Plasmas, 9, 3651(2002).
[8] D. Strickland, G. Mourou. Opt. Commun., 55, 447(1985).
[9] H. Daido, M. Nishiuchi, A. S. Pirozhkov. Rep. Prog. Phys., 75, 056401(2012).
[10] A. Macchi, M. Borghesi, M. Passoni. Rev. Mod. Phys., 85, 751(2013).
[11] A. X. Li, C. Y. Qin, H. Zhang, S. Li, L. L. Fan, Q. S. Wang, T. J. Xu, N. W. Wang, L. H. Yu, Y. Xu, Y. Q. Liu, C. Wang, X. L. Wang, Z. X. Zhang, X. Y. Liu, P. L. Bai, Z. B. Gan, X. B. Zhang, X. B. Wang, C. Fan, Y. J. Sun, Y. H. Tang, B. Yao, X. Y. Liang, Y. X. Leng, B. F. Shen, L. L. Ji, R. X. Li, Z. Z. Xu. High Power Laser Sci. Eng., 10, e26(2022).
[12] C. Y. Qin, H. Zhang, S. Li, S. H. Zhai, A. X. Li, J. Y. Qian, J. Y. Gui, F. X. Wu, Z. X. Zhang, Y. Xu, X. Y. Liang, Y. X. Leng, B. F. Shen, L. L. Ji, R. X. Li. High Power Laser Sci. Eng., 10, e2(2022).
[13] C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. X. Li, Y. T. Li, J. Limpert, J. G. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. J. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Q. Zhu, P. Zhu, J. D. Zuegel. High Power Laser Sci. Eng., 7, e54(2019).
[14] G. W. Collins, L. B. Da Silva, P. Celliers, D. M. Cold, M. E. Foord, R. J. Wallace, A. Ng, S. V. Weber, K. S. Budil, R. Cauble. Science, 281, 1178(1998).
[15] F. J. Rogers, C. A. Iglesias. Science, 263, 50(1994).
[16] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R. J. Mason. Phys. Plasmas, 1, 1626(1994).
[17] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, H. Powell. Phys. Rev. Lett., 86, 436(2001).
[18] P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P. T. Springer, R. Stephens. Phys. Rev. Lett., 91, 125004(2003).
[19] J. Badziak, S. Jabłoński. Appl. Phys. Lett., 90, 151503(2007).
[20] T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson, M. Roth, A. Otten, D. Kraus, R. B. Stephens, H. S. McLean, E. M. Giraldez, M. S. Wei, D. C. Gautier, F. N. Beg. Nat. Phys., 8, 139(2012).
[21] H. Xu, W. Yu, M. Y. Yu, H. B. Cai, S. X. Luan, X. H. Yang, Y. Yin, H. B. Zhuo, J. W. Wang, C. T. Zhou, M. Murakami, Z. Z. Xu. Appl. Phys. Lett., 104, 024105(2014).
[22] C. McGuffey, J. Kim, M. S. Wei, P. M. Nilson, S. N. Chen, J. Fuchs, P. Fitzsimmons, M. E. Foord, D. Mariscal, H. S. McLean, P. K. Patel, R. B. Stephens, F. N. Beg. Sci. Rep., 10, 9415(2020).
[23] X. M. Li, Y. Chao, D. J. Liu, S. T. Zhang, Z. J. Liu, L. H. Cao, C. Y. Zheng. J. Plasma Phys., 89, 905890113(2023).
[24] M. Bailly-Grandvaux, D. Kawahito, C. McGuffey, J. Strehlow, B. Edghill, M. S. Wei, N. Alexander, A. Haid, C. Brabetz, V. Bagnoud, R. Hollinger, M. G. Capeluto, J. J. Rocca, F. N. Beg. Phys. Rev. E, 102, 021201(2020).
[25] S. Jiang, L. L. Ji, H. Audesirk, K. M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N. S. Lewis, D. W. Schumacher, A. Pukhov, R. R. Freeman, K. U. Akli. Phys. Rev. Lett., 116, 085002(2016).
[26] T. Ebert, R. Heber, T. Abel, J. Bieker, G. Schaumann, M. Roth. High Power Laser Sci. Eng., 9, e24(2021).
[27] P. J. Wang, G. J. Qi, Z. Pan, D. F. Kong, Y. R. Shou, J. B. Liu, Z. X. Cao, Z. S. Mei, S. R. Xu, Z. P. Liu, S. Y. Chen, Y. Gao, J. R. Zhao, W. J. Ma. High Power Laser Sci. Eng., 9, e29(2021).
[28] A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, S. M. Saltiel. Appl. Phys. B, 84, 409(2006).
[29] Q. Chen, D. Maslarova, J. Z. Wang, S. X. Lee, V. Horný, D. Umstadter. Phys. Rev. Lett., 128, 164801(2022).
[30] B. Y. Li, F. Liu, M. Chen, F. Y. Wu, J. W. Wang, L. Lu, J. L. Li, X. L. Ge, X. H. Yuan, W. C. Yan, L. M. Chen, Z. M. Sheng, J. Zhang. Phys. Rev. Lett., 128, 244801(2022).
[31] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Plasma Phys. Controll. Fusion, 57, 113001(2015).
[32] X. R. Jiang, D. B. Zou, Z. J. Zhao, L. X. Hu, P. Han, J. Q. Yu, T. P. Yu, Y. Yin, F. Q. Shao. Phys. Rev. Appl., 15, 034032(2021).
[33] D. Y. Yu, D. B. Zou, M. Y. Yu, T. P. Yu, Y. Yin, F. Q. Shao, H. B. Zhuo, C. T. Zhou, S. C. Ruan. New J. Phys., 21, 083003(2019).
[34] P. Mora. Phys. Rev. Lett., 90, 185002(2003).
[35] J. L. Liu, M. Chen, J. Zheng, Z. M. Sheng, C. S. Liu. Phys. Plasmas, 20, 063107(2013).
[36] A. Héron, J. C. Adam, P. Mora. Phys. Plasmas, 27, 013103(2020).
[37] D. B. Zou, A. Pukhov, L. Q. Yi, H. B. Zhou, T. P. Yu, Y. Yin, F. Q. Shao. Sci. Rep., 7, 42666(2017).
[38] A. Curtis, C. Calvi, J. Tinsley, R. Hollinger, V. Kaymak, A. Pukhov, S. J. Wang, A. Rockwood, Y. Wang, V. N. Shlyaptsev, J. J. Rocca. Nat. Commun., 9, 1077(2018).
[39] D. F. Kong, G. Q. Zhang, Y. R. Shou, S. R. Xu, Z. S. Mei, Z. X. Cao, Z. Pan, P. J. Wang, G. J. Qi, Y. Lou, Z. G. Ma, H. Y. Lan, W. T. Wang, Y. H. Li, P. Rubovic, M. Veselsky, A. Bonasera, J. R. Zhao, Y. X. Geng, Y. Y. Zhao, C. B. Fu, W. Luo, Y. G. Ma, X. Q. Yan, W. J. Ma. Matter Radiat. Extremes, 7, 064403(2022).
[40] X. R. Jiang, F. Q. Shao, D. B. Zou, M. Y. Yu, L. X. Hu, X. Y. Guo, T. W. Huang, H. Zhang, S. Z. Wu, G. B. Zhang, T. P. Yu, Y. Yin, H. B. Zhuo, C. T. Zhou. Nucl. Fusion, 60, 076019(2020).
[41] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Macneice, R. Rosner, J. W. Truran, H. Tufo. Astrophys. J. Suppl. Ser, 131, 273(2000).
[42] J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, J. Quant. Spectrosc. Radiat. Transfer, 99, 381(2006).
[43] B. A. Remington, D. Arnett, R. P. Drake, H. Takabe. Science, 284, 1488(1999).
[44] J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman. Nature, 239, 139(1972).
[45] S. Atzeni, A. Schiavi, J. J. Honrubia, X. Ribeyre, G. Schurtz, P. Nicolaï, M. Olazabal-Loumé, C. Bellei, R. G. Evans, J. R. Davies. Phys. Plasmas, 15, 056311(2008).

Set citation alerts for the article
Please enter your email address