• Laser & Optoelectronics Progress
  • Vol. 56, Issue 4, 041601 (2019)
Liang Huang1,*, Weimin Yang1,**, Chengyou Lin2, Zhiwei Jiao1, and Meinong Shi1
Author Affiliations
  • 1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • 2 College of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • show less
    DOI: 10.3788/LOP56.041601 Cite this Article Set citation alerts
    Liang Huang, Weimin Yang, Chengyou Lin, Zhiwei Jiao, Meinong Shi. Design of Polycarbonate/Polymethyl Methacrylate Polymer Multilayer Alternating Films with High Reflectivity in Near-Infrared Region[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041601 Copy Citation Text show less
    Structural diagram of PC/PMMA multilayer alternating film with high reflectivity in near-infrared region
    Fig. 1. Structural diagram of PC/PMMA multilayer alternating film with high reflectivity in near-infrared region
    Total reflectivity versus S of PC/PMMA multilayer alternating film
    Fig. 2. Total reflectivity versus S of PC/PMMA multilayer alternating film
    Refractive index of PC/PMMA film versus wavelength
    Fig. 3. Refractive index of PC/PMMA film versus wavelength
    Reflectance spectrum of PC/PMMA multilayer alternating film in near-infrared region
    Fig. 4. Reflectance spectrum of PC/PMMA multilayer alternating film in near-infrared region
    Transmission spectrum of PC/PMMA multilayer alternating film in visible region
    Fig. 5. Transmission spectrum of PC/PMMA multilayer alternating film in visible region
    Spectral distribution of PC/PMMA multilayer alternating film
    Fig. 6. Spectral distribution of PC/PMMA multilayer alternating film
    Schematic of experimental device. (a) Micro-nano coextrusion device; (b) laminated flow channel principle; (c) change of microlayer number; (d) change of size in lamination process
    Fig. 7. Schematic of experimental device. (a) Micro-nano coextrusion device; (b) laminated flow channel principle; (c) change of microlayer number; (d) change of size in lamination process
    Spectral distributions under different incident angles. (a) 15°; (b) 30°; (c) 45°; (d) 60°; (e) 75°
    Fig. 8. Spectral distributions under different incident angles. (a) 15°; (b) 30°; (c) 45°; (d) 60°; (e) 75°
    Total reflectivity of PC/PMMA film versus incident angle
    Fig. 9. Total reflectivity of PC/PMMA film versus incident angle
    Total reflectivity of PC/PMMA film versus thickness
    Fig. 10. Total reflectivity of PC/PMMA film versus thickness
    StacksWavelengthPCPMMAPC/PMMA
    PM1999.4076159.6536168.4345328.0881
    PM2796.8313126.8187133.7937260.6124
    PM3863.5218137.6429145.2132282.8561
    PM41064.7700170.2254179.5878349.8132
    Table 1. Microlayer thickness of four-periodic PC/PMMA multilayer alternating filmnm
    Liang Huang, Weimin Yang, Chengyou Lin, Zhiwei Jiao, Meinong Shi. Design of Polycarbonate/Polymethyl Methacrylate Polymer Multilayer Alternating Films with High Reflectivity in Near-Infrared Region[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041601
    Download Citation