[1] Zhuo H B, Bai F Z, Xu Y X. Machine vision detection of pointer features in images of analog meter displays[J]. Metrology and Measurement Systems, 27, 589-599(2020).
[2] Shi Y, Xia C H, Hu L N et al. Intelligent recognition method for reading of pointer instrument based on machine vision[J]. Transducer and Microsystem Technologies, 36, 47-49, 52(2017).
[3] Xu L, Shi W, Fang T. Pointer meter reading recognition system used in patrol robot[J]. Chinese Journal of Scientific Instrument, 38, 1782-1790(2017).
[4] Pei L Q, Huang Q D, Zhang Y R et al. Development of automatic verification system for high precision pointer instrument based on machine vision[J]. Measurement & Control Technology, 35, 153-156(2016).
[5] Liu Y, Liu J, Ke Y C. A detection and recognition system of pointer meters in substations based on computer vision[J]. Measurement, 152, 107333(2020).
[6] Wang L, Wang P, Wu L H et al. Computer vision based automatic recognition of pointer instruments: data set optimization and reading[J]. Entropy, 23, 272(2021).
[7] Zuo L, He P L, Zhang C H et al. A robust approach to reading recognition of pointer meters based on improved mask-RCNN[J]. Neurocomputing, 388, 90-101(2020).
[8] Dong Y L, Liu X, Yuan Y et al. Detail-attention convolutional neural network for meter recognition[J]. Scientia Sinica (Technologica), 50, 1437-1448(2020).
[9] Wan J L, Wang H F, Guan M Y et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-net[J]. Power System Technology, 44, 3097-3105(2020).
[10] Wu T Y, Tang S, Zhang R et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 30, 1169-1179(2021).
[12] Yu C Q, Wang J B, Peng C et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11217, 334-349(2018).
[14] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[15] Baek Y, Lee B, Han D et al. Character region awareness for text detection[C], 9357-9366(2019).
[16] Liu K. Recognition of the analog display instrument based on deep learning[D], 33-37(2017).
[17] Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 27, 236-239(1984).
[18] Wang W, Xu W M, Wu S Q et al. Double half-character recognition for wheel-type meter based on convolutional neural network[J]. Journal of Wuhan University of Science and Technology, 44, 68-73(2021).
[19] Xu F B. Research on detection and recognition method of circular pointer instrument with uniform scale[D], 48-49(2019).