• Journal of Geo-information Science
  • Vol. 22, Issue 10, 2088 (2020)
Jie YE1, Fanxiao MENG1,*, Weiming BAI1, Bin ZHANG1, and Jinming ZHENG2
Author Affiliations
  • 1Henan Aero Geophysical Survey and Remote Sensing Center, Zhengzhou 450053, China
  • 2Northwest Institute of Nuclear Technology, Xi'an 710024, China
  • show less
    DOI: 10.12082/dqxxkx.2020.190483 Cite this Article
    Jie YE, Fanxiao MENG, Weiming BAI, Bin ZHANG, Jinming ZHENG. A Comparative Study on the Classification of GF-1 Remote Sensing Images for Zhoukou Urban under the Four Identical Condition[J]. Journal of Geo-information Science, 2020, 22(10): 2088 Copy Citation Text show less
    References

    [1] 陈平生. K-means和ISODATA聚类算法的比较研究[J]. 江西理工大学学报, 2012,33(1):78-80. [ ChenP S. A comparative study on clustering algorithms: K-means and ISODATA[J]. Journal of Jiangxi University of Science and Technology, 2012,33(1):78-80. ] [ Chen P S. A comparative study on clustering algorithms: K-means and ISODATA[J]. Journal of Jiangxi University of Science and Technology, 2012,33(1):78-80. ]

    [2] 彭光雄, 宫阿都, 崔伟宏, 等. 多时相影像的典型区农作物识别分类方法对比研究[J]. 地球信息科学学报, 2009,11(2):225-230. [ PengG X, GongA D, CuiW H, et al. Study on methods comparison of typical remote sensing classification based on multi-temporal images[J]. Journal of Geo-information Science, 2009,11(2):225-230. ] [ Peng G X, Gong A D, Cui W H, et al. Study on methods comparison of typical remote sensing classification based on multi-temporal images[J]. Journal of Geo-information Science, 2009,11(2):225-230. ]

    [3] RanG, MichelleF S, BethT et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover[J]. Remote Sensing of Environment, 205, 253-275(2018).

    [4] ShaharumN S, MohdS H, WanW A et al. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms[J]. Remote Sensing Applications: Society and Environment, 17, 100287(2020).

    [5] BlaschkeT. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2-16(2010).

    [6] FathizadH, HakimzadehA M, MehrjardiR T et al. Evaluating desertification using remote sensing technique and object-oriented classification algorithm in the Iranian central desert[J]. Journal of African Earth Sciences, 145, 115-130(2018).

    [7] 耿仁方, 付波霖, 蔡江涛, 等. 基于无人机影像和面向对象随机森林算法的岩溶湿地植被识别方法研究[J]. 地球信息科学学报, 2019,21(8):1295-1306. [ GengR F, FuB L, CaiJ T, et al. Object-based karst wetland vegetation classification method using unmanned aerial vehicle images and random forest algorithm[J]. Journal of Geo-information Science, 2019,21(8):1295-1306. ] [ Geng R F, Fu B L, Cai J T, et al. Object-based karst wetland vegetation classification method using unmanned aerial vehicle images and random forest algorithm[J]. Journal of Geo-information Science, 2019,21(8):1295-1306. ]

    [8] HadiM, SivaK B, RajK et al. Comparison between pixel- and object-based image classification of a tropical landscape using Système Pour l'Observation de la Terre-5 imagery[J]. Journal of Applied Remote Sensing, 7, 073512(2013).

    [9] PiazzaG A, VibransA C, LiesenbergV et al. Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high-spatial resolution images[J]. GIScience Remote Sensing, 53, 206-226(2016).

    [10] TedrosM B, CharlesR L, QiushengW et al. Comparing pixel-and object-based approaches in effectively classifying Wetland-Dominated landscapes[J]. Remote Sensing, 10, 1-2(2018).

    [11] HayderD, MohammedO I, GomaB A et al. Hierarchical classification approach for mapping rubber tree growth using per-pixel and object-oriented classifiers with SPOT-5 imagery[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 20, 21-30(2017).

    [12] SibaruddinH I, ShafriH Z, PradhanB et al. Comparison of pixel-based and object-based image classification techniques in extracting information from UAV imagery data[J]. IOP Conference Series: Earth and Environmental Science, 169, 012098(2018).

    [13] WangD, WanB, QiuP, QiuP et al. Artificial mangrove species mapping using Pléiades-1: An evaluation of pixel-based and object-based classifications with selected machine learning algorithms[J]. Remote Sensing, 10, 294-316(2018).

    [14] 梁艳. 面向对象与基于像素的高分辨率遥感影像分类在土地利用分类中的应用比较[D]. 太原:太原理工大学, 2012. [ LiangY. Object-oriented vs. pixel-based method for land-use classification using high-resolution remote sensing images[D]. Taiyuan: Taiyuan University of Technology, 2012.] [ Liang Y. Object-oriented vs. pixel-based method for land-use classification using high-resolution remote sensing images[D]. Taiyuan: Taiyuan University of Technology, 2012.]

    [15] 刘纪远, 张增祥, 庄大方, 等. 中国土地利用变化的遥感时空信息研究[M]. 北京: 科学出版社, 2005. [ LiuJ Y, ZhangZ X, ZhuangD F, et al. Research on remote sensing spatio-temporal information of land use change in China[M]. Beijing: Science Press, 2005. ] [ Liu J Y, Zhang Z X, Zhuang D F, et al. Research on remote sensing spatio-temporal information of land use change in China[M]. Beijing: Science Press, 2005. ]

    [16] MarkusG, JingX. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 78-92(2014).

    [17] YuanZ. Research on segmentation scale of information extraction with towns based on GF-2 image. Urumqi: Xinjiang University(2016).

    [18] 杜斌. 基于面向对象的高分辨率遥感影像水体信息提取优势研究[D]. 昆明:云南师范大学, 2014. [ DuB. Research on the superiority of water information extraction based on object-oriented high resolution remote sensing image[D]. Kunming: Yunnan Normal University, 2014. ] [ Du B. Research on the superiority of water information extraction based on object-oriented high resolution remote sensing image[D]. Kunming: Yunnan Normal University, 2014. ]

    [19] Drǎgu?L, TiedeD, ShaunR et al. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 24, 859-871(2010).

    [20] 杨宁. 高分辨率影像面向对象分类特征选择方法研究[D]. 西安:西安科技大学, 2012. [ YangN. Feature selection for object-oriented classification of high resolution remote sensing images[D]. Xi'an: Xi'an University of Science and Technology, 2012. ] [ Yang N. Feature selection for object-oriented classification of high resolution remote sensing images[D]. Xi'an: Xi'an University of Science and Technology, 2012. ]

    [21] GaoB. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 58, 257-266(1996).

    [22] BhandariA K, KumarA, SinghG K. Feature extraction using Normalized Nifference Negetation Index (NDVI): A case study of Jabalpur City[J]. Procedia Technology, 6, 612-621(2012).

    [23] VanNiel T G, McVicarT R, DattB. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification[J]. Remote Sensing of Environment, 98, 468-480(2005).

    [24] JohnR. Jensen. Introductory digital image processing: A remote sensing perspective, 4th edition[M]. Glenview: Pearson Education(2016).

    [25] CongaltonR G, KassG. Assessing the accuracy of remotely sensed data: principles and practices, 3th edition[M]. CRC Press(2019).

    [26] BreimanL, FriedmanJ H, OlshenR A et al. Classification and regression trees[M]. New York: Chapman and Hall(1984).

    [27] YangS, RossS. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78-87(2012).

    [28] ZhangZ M, HeG J, WangM M et al. Detecting decadal land cover changes in mining regions based on satellite remotely sensed imagery: A case study of the Stone Mining Area in Luoyuan County, SE China[J]. Photogrammetric Engineering & Remote Sensing, 81, 745-751(2015).

    [29] ArjanJ H, CrystalA, JamesA. Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States[J]. Remote Sensing of Environment, 186, 275-285(2016).

    [30] CortesC, VapnikV. Support vector networks[J]. Machine Learning, 20, 273-297(1995).

    [31] GiorgosM, JunghoI, CaesarO. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259(2011).

    [32] MicheleD, LiviuT E, MattiaM et al. Semi-supervised SVM for individual tree crown species classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 110, 77-87(2015).

    [33] MustafaU, FusunB S, BarnaliD. Application of support vector machines for landuse classification using high-resolution RapidEye images: A sensitivity analysis[J]. European Journal of Remote Sensing, 48, 403-422(2015).

    [34] AsmalaA, UmmiK M, OthmanM et al. Comparative analysis of support vector machine, maximum likelihood and neural network classification on multispectral remote sensing data[J]. International Journal of Advanced Computer Science and Applications, 9, 529-537(2018).

    [35] BreimanL. Random forests[J]. Machine Learning, 45, 5-32(2001).

    [36] CollinsL, GriffioenP, NewellG et al. The utility of random forests for wildfire severity mapping[J]. Remote Sensing of Environment, 216, 374-384(2018).

    [37] UyenN, EdwardP G, ThanhD D et al. Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona[J]. Ecological Informatics, 50, 43-50(2019).

    [38] FoodyG M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 80, 185-201(2002).

    Jie YE, Fanxiao MENG, Weiming BAI, Bin ZHANG, Jinming ZHENG. A Comparative Study on the Classification of GF-1 Remote Sensing Images for Zhoukou Urban under the Four Identical Condition[J]. Journal of Geo-information Science, 2020, 22(10): 2088
    Download Citation