[1] GIN S, ABDELOUAS A, CRISCENTI L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Mater Today, 2013, 16(6): 243-248.
[2] H?GBERG L. Root causes and impacts of severe accidents at large nuclear power plants[J]. Ambio, 2013, 42(3): 267-284.
[3] WALLENIUS J. Maximum efficiency nuclear waste transmutation[J]. Ann Nucl Energy, 2019, 125: 74-79.
[4] ZHANG Qichao. Analysis of hydrogen absorption and hydrogen embrittlement of high-level radioactive waste canisters during corrosion processes[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2020.
[5] RONG Jian, LIU Zhan. At Energy Sci Technol, 2020, 54(9): 1638-1643.
[6] GIN S, DELAYE J M, ANGELI F, et al. Aqueous alteration of silicate glass: State of knowledge and perspectives[J]. NPJ Mater Degrad, 2021, 5: 42.
[7] FRANKEL G S, VIENNA J D, LIAN J, et al. Recent advances in corrosion science applicable to disposal of high-level nuclear waste[J]. Chem Rev, 2021, 121(20): 12327-12383.
[8] GUO X L, GIN S, FRANKEL G S. Review of corrosion interactions between different materials relevant to disposal of high-level nuclear waste[J]. NPJ Mater Degrad, 2020, 4: 34.
[9] PR?V?LIE R, BANDOC G. Nuclear energy: between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications[J]. J Environ Manage, 2018, 209: 81-92.
[10] STONEHAM A M. Nuclear fission: the interplay of science and technology[J]. Philos Trans A Math Phys Eng Sci, 2010, 368(1923): 3295-3313.
[11] HORVATH A, RACHLEW E. Nuclear power in the 21st century: challenges and possibilities[J]. Ambio, 2016, 45(Suppl 1): S38-S49.
[12] SOVACOOL B K, DWORKIN M. Overcoming the global injustices of energy poverty[J]. Environ Sci Policy Sustain Dev, 2012, 54(5): 14-28.
[13] CHEN Zekun, ZHANG Liyan. J Chin Ceram Soc, 2022, 50(5): 1301-1309.
[14] ZHANG Jiandong. Study of the hydrogen behavior in tungsten and elemental distribution in the corroded layer of ISG glass using time-of-flight secondary ion mass spectrometry[D]. Lanzhou: Lanzhou University, 2018.
[15] JIANG Z H, ZHANG Q Y. The structure of glass: a phase equilibrium diagram approach[J]. Prog Mater Sci, 2014, 61: 144-215.
[16] RALSTON K D, BIRBILIS N. Effect of grain size on corrosion: a review[J]. CORROSION, 2010, 66(7): 75005.
[17] CHEN P, MA B G, TAN H B, et al. Utilization of Barium slag to improve chloride-binding ability of cement-based material[J]. J Clean Prod, 2021, 283: 124612.
[18] YIN Yansheng. J Guangzhou Marit Univ, 2020, 28(1): 1-9.
[19] ZHANG Y X, LI H R, LIU S Y, et al. Raman spectroscopic study of irregular network in the process of glass conversion to CaO-MgO-Al2O3-SiO2 glass-ceramics[J]. J Non Cryst Solids, 2021, 563: 120701.
[20] BOUAKKAZ R, ABDELOUAS A, GRAMBOW B. Kinetic study and structural evolution of SON68 nuclear waste glass altered from 35 to 125?℃ under unsaturated H2O and D2O18 vapour conditions[J]. Corros Sci, 2018, 134: 1-16.
[21] EBERT W, HOBURG R F, BATES J. The sorption of water on obsidian and a nuclear waste glass[J]. Phys Chem Glasses, 1991, 32: 133-137.
[22] ZHU Qingong, ZHAO Gaoling, HAN Gaorong. J Inorg Mater, 2023, 38(2): 170-176.
[23] QIU Jianrong, ZHOU Shifeng, YUE Yuanzheng. J Chin Ceram Soc, 2022, 50(4): 877-878.
[24] YAN Jingping, DENG Lu, HU Lili. J Chin Ceram Soc, 2022, 50(4): 1006-1021.
[25] KOMATSU T. Design and control of crystallization in oxide glasses[J]. J Non Cryst Solids, 2015, 428: 156-175.
[26] MEAD R N, MOUNTJOY G. A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1-x glasses[J]. J Phys Chem B, 2006, 110(29): 14273-14278.
[27] RODRIGUES A, FEARN S, VILARIGUES M. Historic K-rich silicate glass surface alteration: Behaviour of high-silica content matrices[J]. Corros Sci, 2018, 145: 249-261.
[28] AWAZU K, KAWAZOE H. Strained Si—O—Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses[J]. J Appl Phys, 2003, 94(10): 6243-6262.
[29] ZHANG Y X, ZHANG T Z, LI H R, et al. Effect of surface grain structure on reaction of residual glass phase with hydrofluoric acid in glass-ceramics[J]. Ceram Int, 2023, 49(19): 32228-32236.
[30] LEDIEU A DEVREUX F BARBOUX P. The role of aluminium in the durability of alumino-borosilicate glasses[J]. Phys Chem Glasses, 2005, 46(1): 12-20.
[31] MCGRAIL B P, ICENHOWER J P, SHUH D K, et al. The structure of Na2O-Al2O3-SiO2 glass: impact on sodium ion exchange in H2O and D2O[J]. J Non Cryst Solids, 2001, 296(1/2): 10-26.
[32] FAN Dong, ZHONG Xin, WANG Yawen, et al. J Inorg Mater, 2023, 38(5): 544-553.
[33] LIU Pingping, ZHONG Xin, ZHANG Le, et al. J Inorg Mater, 2022, 37(12): 1267-1274.
[34] PIERCE E M, REED L R, SHAW W J, et al. Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4)-malinkoite (NaBSiO4) join[J]. Geochim Cosmochim Acta, 2010, 74(9): 2634-2654.
[35] SMETS B M J, THOLEN M G W. Leaching of glasses with molar composition 20Na2O?10RO?xAl2O3?(70-x)SiO2[J]. J Am Ceram Soc, 2006, 67(4): 281-284.
[36] KE X F, WANG X W, WANG Y D, et al. Mg and Al mixed effects on thermal properties in aluminosilicate glasses[J]. J Am Ceram Soc, 2023, 106(12): 7449-7459.
[37] VIENNA J D, CRUM J V. Non-linear effects of alumina concentration on product consistency test response of waste glasses[J]. J Nucl Mater, 2018, 511: 396-405.
[38] REISER J T, PARRUZOT B, GIN S, et al. Effects of Al:Si and (Al+Na):Si ratios on the static corrosion of sodium-boroaluminosilicate glasses[J]. Int J Appl Glass Sci, 2022, 13(1): 94-111.
[39] BUNKER B C. Molecular mechanisms for corrosion of silica and silicate glasses[J]. J Non Cryst Solids, 1994, 179: 300-308.
[40] MANSAS C, DELAYE J M, CHARPENTIER T, et al. Drivers of water transport in glass: Chemical or topological effect of the glass network?[J]. J Phys Chem C, 2017, 121(30): 16201-16215.
[41] GIN S, NEILL L, FOURNIER M, et al. The controversial role of inter-diffusion in glass alteration[J]. Chem Geol, 2016, 440: 115-123.
[42] WILD B, WHITE C E, BOURG I C. Molecular dynamics simulations of reverse osmosis in silica nanopores[J]. J Phys Chem C, 2022, 126(21): 9161-9172.
[43] JAN A, ANOOP KRISHNAN N M. Diminished diffusion in the aged hydrated gels of irradiated borosilicate glasses[J]. J Phys Chem C, 2022, 126(35): 15037-15045.
[44] GIN S, COLLIN M, JOLLIVET P, et al. Dynamics of self-reorganization explains passivation of silicate glasses[J]. Nat Commun, 2018, 9(1): 2169.
[45] ZENG Huidan, DENG Yifan, LI Xiang, et al. J Chin Ceram Soc, 2018, 46(1): 1-10.
[46] BAUM M, RIEUTORD F, JURANYI F, et al. Dynamical and structural properties of water in silica nanoconfinement: Impact of pore size, ion nature, and electrolyte concentration[J]. Langmuir, 2019, 35(33): 10780-10794.
[47] KOHN S C, DUPREE R, SMITH M E. Proton environments and hydrogen-bonding in hydrous silicate glasses from proton NMR[J]. Nature, 1989, 337(6207): 539-541.
[48] CURTI E, CROVISIER J L, MORVAN G, et al. Long-term corrosion of two nuclear waste reference glasses (MW and SON68): A kinetic and mineral alteration study[J]. Appl Geochem, 2006, 21(7): 1152-1168.
[49] TOURNIé A, RICCIARDI P, COLOMBAN P. Glass corrosion mechanisms: a multiscale analysis[J]. Solid State Ion, 2008, 179(38): 2142-2154.
[50] DOREMUS R H. Interdiffusion of hydrogen and alkali ions in a glass surface[J]. J Non Cryst Solids, 1975, 19: 137-144.
[51] NEEWAY J J, KERISIT S N, LIU J A, et al. Ion-exchange interdiffusion model with potential application to long-term nuclear waste glass performance[J]. J Phys Chem C, 2016, 120(17): 9374-9384.
[52] FRANKEL G S, VIENNA J D, LIAN J, et al. Recent advances in corrosion science applicable to disposal of high-level nuclear waste[J]. Chem Rev, 2021, 121(20): 12327-12383.
[53] ZHANG L Y, GUO X J. Thermal history and its implications: A case study for ion exchange[J]. J Am Ceram Soc, 2020, 103(7): 3971-3977.
[54] WANG Yanhang, LI Xianzi, YANG Penghui, et al. J Chin Ceram Soc, 2022, 50(8): 2257-2269.
[55] DUGGER D L, STANTON J H, IRBY B N, et al. The exchange of twenty metal ions with the weakly acidic silanol group of silica Gel1, 2[J]. J Phys Chem, 1964, 68(4): 757-760.
[56] GRAMBOW B. A general rate equation for nuclear waste glass corrosion[J]. MRS Proc, 1984, 44: 15.
[57] MCGRAIL B P, EBERT W L, BAKEL A J, et al. Measurement of kinetic rate law parameters on a Na-Ca-Al borosilicate glass for low-activity waste[J]. J Nucl Mater, 1997, 249(2-3): 175-189.
[58] MCGRAIL B P, MARTIN P F, LINDENMEIER C W. Accelerated Testing of Waste forms using a Novel Pressurized Unsaturated flow (PUF) Method[J]. MRS Online Proc Libr, 1996, 465(1): 253-260.
[59] MA T Q, JIVKOV A P, LI W P, et al. A mechanistic model for long-term nuclear waste glass dissolution integrating chemical affinity and interfacial diffusion barrier[J]. J Nucl Mater, 2017, 486: 70-85.
[60] PAUL A. Chemical durability of glasses; a thermodynamic approach[J]. J Mater Sci, 1977, 12(11): 2246-2268.
[61] JANTZEN C M. Nuclear waste glass durability: I, predicting environmental response from thermodynamic (pourbaix) diagrams[J]. J Am Ceram Soc, 1992, 75(9): 2433-2448.
[62] JANTZEN C M, PLODINEC M J. Thermodynamic model of natural, medieval and nuclear waste glass durability[J]. J Non Cryst Solids, 1984, 67(1-3): 207-223.
[63] CHAVE T, FRUGIER P, AYRAL A, et al. Solid state diffusion during nuclear glass residual alteration in solution[J]. J Nucl Mater, 2007, 362(2/3): 466-473.
[64] GIN S, MESTRE J P. SON 68 nuclear glass alteration kinetics between pH 7 and pH 11.5[J]. J Nucl Mater, 2001, 295(1): 83-96.
[65] ALLOTEAU F, MAJéRUS O, BIRON I, et al. Temperature-dependent mechanisms of the atmospheric alteration of a mixed-alkali lime silicate glass[J]. Corros Sci, 2019, 159: 108129.
[66] ABRAITIS P K, LIVENS F R, MONTEITH J E, et al. The kinetics and mechanisms of simulated British Magnox waste glass dissolution as a function of pH, silicic acid activity and time in low temperature aqueous systems[J]. Appl Geochem, 2000, 15(9): 1399-1416.
[67] AAGAARD P, HELGESON H C. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations[J]. Am J Sci, 1982, 282(3): 237-285.
[68] ICENHOWER J P, SAMSON S, LüTTGE A, et al. Towards a consistent rate law: Glass corrosion kinetics near saturation[J]. Geol Soc Lond Spec Publ, 2004, 236(1): 579-594.
[69] CONRADT R. Chemical durability of oxide glasses in aqueous solutions: a review[J]. J Am Ceram Soc, 2008, 91(3): 728-735.
[70] KRITZER P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review[J]. J Supercrit Fluids, 2004, 29(1/2): 1-29.
[71] NEEWAY J, ABDELOUAS A, GRAMBOW B, et al. Dissolution mechanism of the SON68 reference nuclear waste glass: new data in dynamic system in silica saturation conditions[J]. J Nucl Mater, 2011, 415(1): 31-37.
[72] ADVOCAT T, CROVISIER J L, VERNAZ E, et al. Hydrolysis of R7T7 nuclear waste glass in dilute media: Mechanisms and rate as a function of ph[J]. MRS Online Proc Libr, 1990, 212(1): 57-64.
[73] GIN S, GUO X L, DELAYE J M, et al. Insights into the mechanisms controlling the residual corrosion rate of borosilicate glasses[J]. NPJ Mater Degrad, 2020, 4: 41.
[74] IWALEWA T M, QU T Y, FARNAN I. Investigation of the maximum dissolution rates and temperature dependence of a simulated UK nuclear waste glass in circum-neutral media at 40 and 90 ℃ in a dynamic system[J]. Appl Geochem, 2017, 82: 177-190.
[75] FENG X, FU L, CHOUDHURY T K, et al. Mechanistic effects of deuteration on the aqueous corrosion of nuclear waste glasses[J]. MRS Online Proc Libr, 1990, 212(1): 49-56.
[76] JéGOU C, GIN S, LARCHé F. Alteration kinetics of a simplified nuclear glass in an aqueous medium: Effects of solution chemistry and of protective gel properties on diminishing the alteration rate[J]. J Nucl Mater, 2000, 280(2): 216-229.
[77] FRUGIER P, MINET Y, RAJMOHAN N, et al. Modeling glass corrosion with GRAAL[J]. NPJ Mater Degrad, 2018, 2: 35.
[78] MINET Y, BONIN B, GIN S, et al. Analytic implementation of the GRAAL model: application to a R7T7-type glass package in a geological disposal environment[J]. J Nucl Mater, 2010, 404(3): 178-202.
[79] GEISLER T, DOHMEN L, LENTING C, et al. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy[J]. Nat Mater, 2019, 18(4): 342-348.
[80] ICENHOWER J P, MCGRAIL B P, SHAW W J, et al. Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions: implications for Transition State Theory[J]. Geochim Cosmochim Acta, 2008, 72(12): 2767-2788.
[81] GEISLER T, NAGEL T, KILBURN M R, et al. The mechanism of borosilicate glass corrosion revisited[J]. Geochim Cosmochim Acta, 2015, 158: 112-129.
[82] CAILLETEAU C, ANGELI F, DEVREUX F, et al. Insight into silicate-glass corrosion mechanisms[J]. Nat Mater, 2008, 7(12): 978-983.
[83] POLUEKTOV P P, SCHMIDT O V, KASCHEEV V A, et al. Modelling aqueous corrosion of nuclear waste phosphate glass[J]. J Nucl Mater, 2017, 484: 357-366.
[84] HELLMANN R, COTTE S, CADEL E, et al. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion[J]. Nat Mater, 2015, 14(3): 307-311.
[85] FRUGIER P, GIN S, MINET Y, et al. SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model[J]. J Nucl Mater, 2008, 380(1-3): 8-21.
[86] LENTING C, PLüMPER O, KILBURN M, et al. Towards a unifying mechanistic model for silicate glass corrosion[J]. NPJ Mater Degrad, 2018, 2: 28.
[87] JOLLIVET P, GALOISY L, CALAS G, et al. Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: Evidence of a double-layered gel[J]. J Non Cryst Solids, 2019, 503-504: 268-278.
[88] GIN S, GUITTONNEAU C, GODON N, et al. Nuclear glass durability: new insight into alteration layer properties[J]. J Phys Chem C, 2011, 115(38): 18696-18706.
[89] GRAMBOW B, MüLLER R. First-order dissolution rate law and the role of surface layers in glass performance assessment[J]. J Nucl Mater, 2001, 298(1/2): 112-124.
[90] HOPF J, ESKELSEN J R, CHIU M, et al. Toward an understanding of surface layer formation, growth, and transformation at the glass-fluid interface[J]. Geochim Cosmochim Acta, 2018, 229: 65-84.
[91] BANSAL N, MOHANTY B C, SINGH K. Diffusional investigation of alkali ions from composition tuned glass substrates to Mo-thin film for solar cell application[J]. Surf Interfaces, 2021, 24: 101060.
[92] COLLIN M, FOURNIER M, CHARPENTIER T, et al. Impact of alkali on the passivation of silicate glass[J]. NPJ Mater Degrad, 2018, 2: 16.
[93] STRACHAN D, NEEWAY J J, PEDERSON L, et al. On the dissolution of a borosilicate glass with the use of isotopic tracing - Insights into the mechanism for the long-term dissolution rate[J]. Geochim Cosmochim Acta, 2022, 318: 213-229.
[94] RANA M A, DOUGLAS R W. The Reaction between Glass and Water. Part I. Experimental Methods and Observations[J]. Phys. Chem. Glasses-B, 1961, 2: 179-195.
[95] RANA M A, DOUGLAS R W. The Reaction between Glass and Water. Part 2. Discussion for the Results.[J]. Phys. Chem. Glasses-B, 1961, 2: 196-204.
[96] CHEN Y, MCGRAIL B P, ENGEL D W. Source-term analysis for Hanford low-activity tank waste using the reaction-transport code AREST-CT[J]. MRS Online Proc Libr, 1996, 465(1): 1051-1058.
[97] SHENG J W, LUO S G, TANG B L. Temperature effects on the leaching behavior of a high-level waste glass form[J]. Nucl Technol, 1998, 123(3): 296-303.
[98] NGO D, LIU H S, KAYA H, et al. Dissolution of silica component of glass network at early stage of corrosion in initially silica-saturated solution[J]. J Am Ceram Soc, 2019, 102(11): 6649-6657.
[99] VALLE N, VERNEY-CARRON A, STERPENICH J, et al. Elemental and isotopic (29Si and 18O) tracing of glass alteration mechanisms[J]. Geochim Cosmochim Acta, 2010, 74(12): 3412-3431.
[100] FRUGIER P, CHAVE T, GIN S, et al. Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water[J]. J Nucl Mater, 2009, 392(3): 552-567.
[101] DEBURE M, DE WINDT L, FRUGIER P, et al. HLW glass dissolution in the presence of magnesium carbonate: diffusion cell experiment and coupled modeling of diffusion and geochemical interactions[J]. J Nucl Mater, 2013, 443(1-3): 507-521.
[102] GIN S, JOLLIVET P, FOURNIER M, et al. The fate of silicon during glass corrosion under alkaline conditions: a mechanistic and kinetic study with the International Simple Glass[J]. Geochim Cosmochim Acta, 2015, 151: 68-85.
[103] BRIMAN I M, RéBISCOUL D, DIAT O, et al. Dynamics of water confined in gel formed during glass alteration at a picosecond scale[J]. Procedia Earth Planet Sci, 2013, 7: 733-737.
[104] DERUELLE O, SPALLA O, BARBOUX P, et al. Growth and ripening of porous layers in water altered glasses[J]. J Non Cryst Solids, 2000, 261(1-3): 237-251.
[105] BRIMAN I M, RéBISCOUL D, DIAT O, et al. Impact of pore size and pore surface composition on the dynamics of confined water in highly ordered porous silica[J]. J Phys Chem C, 2012, 116(12): 7021-7028.
[106] GEISLER T, JANSSEN A, SCHEITER D, et al. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism[J]. J Non Cryst Solids, 2010, 356(28-30): 1458-1465.
[107] FRANKEL G S, VIENNA J D, LIAN J, et al. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals[J]. NPJ Mater Degrad, 2018, 2: 15.
[108] RIEKE P C, KERISIT S, RYAN J V, et al. Adaptation of the GRAAL model of Glass Reactivity to accommodate non-linear diffusivity[J]. J Nucl Mater, 2018, 512: 79-93.
[109] OUYANG Qin, WANG Yanfei, XU Jian, et al. J Inorg Mater, 2022, 37(8): 821-840.
[110] ZHANG H H, SUZUKI-MURESAN T, GIN S, et al. Effects of vapor hydration and radiation on the leaching behavior of nuclear glass[J]. J Nucl Mater, 2023, 578: 154368.
[111] ZHANG X Y, YANG F, ZHU S K, et al. Influence of ion radiation on leaching behavior of borosilicate glass[J]. J Non Cryst Solids, 2023, 602: 122091.
[112] SUN Z, LV P, ZHANG J D, et al. Morphology and chemical composition of Si-ion-irradiated zirconolite glass-ceramic[J]. J Eur Ceram Soc, 2023, 43(8): 3610-3620.