[1] CHEN Y, SONG Y H, CHEN Y, et al. Comparative experimental study on the harmless treatment of cyanide tailings through slurry electrolysis[J]. Sep Purif Technol, 2020, 251: 117314.
[2] MA Pingjie. N Technol N Prod China, 2017(3): 109-110.
[3] HUANG Aihua. Gold Sci Technol, 2014, 22(2): 83-89.
[4] QIU Tingsheng, HAO Zhiwei, CHENG Xianxiong. Jiangxi Metall, 2002, 22(3): 25-29.
[5] LUAN Xinyu, ZHU Jia, ZHANG Jinsong. Liaoning Chem Ind, 2020, 49(4): 337-340.
[6] ZHANG Manman, FENG Zhanli, WANG Junqiang, et al. Chem Ind Eng, 2019, 36(1): 2-9.
[7] CHEN Zhida, FAN Zhenjiang. Environ Prot, 1982, 10(2): 8-11.
[8] GONG Xilin, QU Weihua, LI Qin. Gold, 1992, 13(8): 51-57.
[9] XU Furong, LIU Jie. Gold, 1985, 6(4): 33-36.
[10] PARGA J R, COCKE D L. Oxidation of cyanide in a hydrocyclone reactor by chlorine dioxide[J]. Desalination, 2001, 140(3): 289-296.
[11] CASTELLANOS-LEAL E L, ACEVEDO-PE-A P, GüIZA- ARGüELLO V R, et al. N and F codoped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions[J]. Mat Res, 2017, 20(2): 487-495.
[12] DAGHRIR R, DROGUI P, ROBERT D. Modified TiO2 for environmental photocatalytic applications: A review[J]. Ind Eng Chem Res, 2013, 52(10): 3581-3599.
[13] NKAMBULE T I, KUVAREGA A T, KRAUSE R W M, et al. Synthesis and characterisation of Pd-modified N-doped TiO2 for photocatalytic degradation of natural organic matter (NOM) fractions[J]. Environ Sci Pollut Res Int, 2012, 19(9): 4120-4132.
[14] WANG X J, WU Z, WANG Y, et al. Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation[J]. J Hazard Mater, 2013, 262: 16-24.
[15] TAKASHI K, YASUSHI I, HIROMI Y. Photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in the degradation of gaseous organic molecules [J]. Catal Today, 2019, 332: 222-226.
[16] COSTA J A S, DE JESUS R A, SANTOS D O, et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review[J]. J Environ Chem Eng, 2021, 9(3): 105259.
[17] ZHANG Yali, YANG Jing, YU Xianjin, et al. Hydrometall China, 2014, 33(4): 313-316.
[18] BAEISSA E S. Photocatalytic removal of cyanide by cobalt metal doped on TiO2-SiO2 nanoparticles by photo-assisted deposition and impregnation methods[J]. J Ind Eng Chem, 2014, 20(5): 3761-3766.
[19] PAN Y B, ZHANG Y L, HUANG Y G, et al. Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research[J]. Chem Eng J, 2022, 428: 131257.
[20] YANG Z, ZHANG Y L, HUANG Y G, et al. Enhanced photocatalytic reaction and mechanism for treating cyanide-containing wastewater by silicon-based nano-titania[J]. Hydrometallurgy, 2020, 198: 105512.
[21] ZHANG Yang, ZHANG Yali, HUANG Yaoguo, et al. Chin J Nonferrous Met, 2023, 33(1): 191-202.
[22] PAN Y B, ZHANG Y L, HUANG Y G, et al. Synergistic effect of adsorptive photocatalytic oxidation and degradation mechanism of cyanides and Cu/Zn complexes over TiO2/ZSM-5 in real wastewater[J]. J Hazard Mater, 2021, 416: 125802.
[23] WEI P H, ZHANG Y L, HUANG Y G, et al. Structural design of SiO2/TiO2 materials and their adsorption-photocatalytic activities and mechanism of treating cyanide wastewater[J]. J Mol Liq, 2023, 377: 121519.
[24] WANG L J, FAN H L, SHANGGUAN J, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Appl Mater Interfaces, 2014, 6(23): 21167-21177.
[25] FANG Hongjie, LIU Hui, YAN Fang, et al. J Chin Ceram Soc, 2015, 43(2): 215-221.
[26] WANG Hao, ZHAO Dafang, LI Xiaodong, et al. J Chin Ceram Soc, 2006, 34(1): 107-113.
[27] SUN Xiuli, CHEN Aiping, Lü Hui, et al. CIESC J, 2014, 65(9): 3718-3723.
[28] WANG Zishuai, WANG Yaoqiang, XIAO Gang, et al. CIESC J, 2019, 70(10): 4062-4071.
[29] NAYL A A, AHMED I M, ABD-ELHAMID A I, et al. Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials[J]. Sep Purif Technol, 2020, 234: 116060.
[30] LI Y, GUO Y, LIU Y Z. Synthesis of high purity TiO2 nanoparticles from Ti(SO4)2 in presence of EDTA as complexing agent[J]. China Particuology, 2005, 3(4): 240-242.
[31] SU Y Y, TENG Z G, YAO H, et al. A multifunctional PB@mSiO2-PEG/DOX nanoplatform for combined photothermal- chemotherapy of tumor[J]. ACS Appl Mater Interfaces, 2016, 8(27): 17038-17046.
[32] SONG H O, ZHOU Y, LI A M, et al. Selective removal of nitrate from water by a macroporous strong basic anion exchange resin[J]. Desalination, 2012, 296: 53-60.
[33] RAJ K A, VISWANATHAN B. Single-step synthesis and structural study of mesoporous sulfated titania nanopowder by a controlled hydrolysis process[J]. ACS Appl Mater Interfaces, 2009, 1(11): 2462-2469.
[34] PAN Y B, ZHANG Y L, HUANG Y G, et al. Functional Ag-doped coralloid titanosilicate zeolite (cts-Ag) for efficiently catalytic and photodegradative removal of free cyanides and copper/zinc-cyanide complexes in real wastewater[J]. J. Alloys Compd., 2022, 926: 166848.