• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210016 (2023)
Peiqi Yang* and Mingjun Wang
Author Affiliations
  • School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
  • show less
    DOI: 10.3788/LOP220589 Cite this Article Set citation alerts
    Peiqi Yang, Mingjun Wang. Hyperspectral Image Classification Based on Automatic Threshold Attribute Profiles and Spatial-Spectral Encoding Union Features[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210016 Copy Citation Text show less
    General flow chart of hyperspectral classification
    Fig. 1. General flow chart of hyperspectral classification
    Construction of automatic threshold attribute profiles.(a) Construction of GD and ADC; (b) construction of MSC; (c) tree filtering
    Fig. 2. Construction of automatic threshold attribute profiles.(a) Construction of GD and ADC; (b) construction of MSC; (c) tree filtering
    Generation of EAP
    Fig. 3. Generation of EAP
    Image data of Pavia University dataset
    Fig. 4. Image data of Pavia University dataset
    Image data of Salinas dataset
    Fig. 5. Image data of Salinas dataset
    Filtered images. (a) Third filtering; (b) second filtering; (c) first filtering; (d) first PC; (e) first filtering; (f) second filtering; (g) third filtering
    Fig. 6. Filtered images. (a) Third filtering; (b) second filtering; (c) first filtering; (d) first PC; (e) first filtering; (f) second filtering; (g) third filtering
    Accuracy comparison results of different methods on 9 categories for Pavia University dataset
    Fig. 7. Accuracy comparison results of different methods on 9 categories for Pavia University dataset
    Accuracy comparison results of different methods on 16 categories for Salinas dataset
    Fig. 8. Accuracy comparison results of different methods on 16 categories for Salinas dataset
    DatasetPavia UniversitySalinas
    Area55879,93720,131561,16940224174,45732,67290,88848
    Standard deviation14,26,39,5212,22,32,42
    Table 1. Attribute and threhold
    DatasetλNumber of hidden layer neuronsS-SFMSAE structure
    Pavia University0.180171-100-80-9
    Salinas0.00180255-120-80-16
    Table 2. Parameter settings of different datasets
    DatasetS-SFM SAECDA SAESVM-RFS1-D CNNCNN-PPFLBP-ELM
    OA99.2897.5997.5991.1092.2796.48
    AA99.0197.6692.9293.3096.9891.81
    Kappa99.0596.8696.9088.5389.8995.48
    Table 3. Comparison of various methods on Pavia University
    DatasetS-SFM SAECDA SAESVM-RFS1-D CNNCNN-PPFLBP-ELM
    OA98.3296.0793.1589.2894.8092.42
    AA98.9197.5696.8794.8397.7396.31
    Kappa98.1396.7892.3588.1394.1791.55
    Table 4. Comparison of various methods on Salinas
    Peiqi Yang, Mingjun Wang. Hyperspectral Image Classification Based on Automatic Threshold Attribute Profiles and Spatial-Spectral Encoding Union Features[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210016
    Download Citation