Peiqi Yang, Mingjun Wang. Hyperspectral Image Classification Based on Automatic Threshold Attribute Profiles and Spatial-Spectral Encoding Union Features[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210016

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 12, 1210016 (2023)

Fig. 1. General flow chart of hyperspectral classification

Fig. 2. Construction of automatic threshold attribute profiles.(a) Construction of GD and ADC; (b) construction of MSC; (c) tree filtering

Fig. 3. Generation of EAP

Fig. 4. Image data of Pavia University dataset

Fig. 5. Image data of Salinas dataset

Fig. 6. Filtered images. (a) Third filtering; (b) second filtering; (c) first filtering; (d) first PC; (e) first filtering; (f) second filtering; (g) third filtering

Fig. 7. Accuracy comparison results of different methods on 9 categories for Pavia University dataset

Fig. 8. Accuracy comparison results of different methods on 16 categories for Salinas dataset
|
Table 1. Attribute and threhold
|
Table 2. Parameter settings of different datasets
|
Table 3. Comparison of various methods on Pavia University
|
Table 4. Comparison of various methods on Salinas

Set citation alerts for the article
Please enter your email address