[2] Li Z H, Yang S Q, Yu J H et al. State-of-the-art Survey on Deterministic Transmission Technologies in Time-sensitive Networking[J]. Journal of Software, 33, 4334-4355(2022).
[7] Gangakhedkar S, Cao H, Ali A R et al. Use Cases, Requirements and Challenges of 5G Communication for Industrial Automation[C], 1-6(2018).
[8] Pfeiffer T, Dom P, Bidkar S et al. PON Going Beyond FTTH [Invited Tutorial][J]. Journal of Optical Communications and Networking, 14, A31-A40(2022).
[11] Tashiro T, Kuwano S, Terada J et al. A Novel DBA Scheme for TDM-PON based Mobile Fronthaul[C], Tu3F.3(2014).
[12] Uzawa H, Nomura H, Shimada T et al. Practical Mobile-DBA Scheme Considering Data Arrival Period for 5G Mobile Fronthaul with TDM-PON[C], 1-3(2017).
[13] Christodoulopoulos K, Bidkar S, Pfeiffer T et al. Deterministically Scheduled PON for Industrial Applications[C], Tu3F.5(2023).
[14] Su C, Zhang J W, Ji Y F. Time-aware Deterministic Bandwidth Allocation Scheme in TDM-PON for Time-sensitive Industrial Flows[J]. Journal of Optical Communications and Networking, 15, 255-267(2023).
[15] Su C, Zhang J W, Yu H et al. Time-aware Deterministic Bandwidth Allocation Scheme for Industrial TDM-PON[C], Tu5.62(2022).
[16] Bidkar S, Galaro J, Pfeiffer T. First Demonstration of an Ultra-low-latency Fronthaul Transport over a Commercial TDM-PON Platform[C], Tu2K.3(2018).
[17] Bidkar S, Bonk R, Pfeiffer T. Low-latency TDM-PON for 5G Xhaul[C], 3203123(2020).
[18] Su C, Zhang J W, Ji Y F. Cyclic Transmission Window-based Bandwidth Allocation Scheme for Asynchronous Time-sensitive Industrial Applications in TDM-PON[J]. Journal of Optical Communications and Networking, 15, 820-829(2023).
[20] Kalør A E, Guillaume R, Nielsen J J et al. Network Slicing in Industry 4.0 Applications: Abstraction Methods and End-to-end Analysis[J]. IEEE Transactions on Industrial Informatics, 14, 5419-5427(2018).
[21] Jiang Y M, Liu Y[M]. Stochastic Network Calculus(2008).
[22] Yao H, Gao P, Wang J et al. Capsule Network Assisted IoT Traffic Classification Mechanism for Smart Cities[J]. IEEE Internet of Things Journal, 6, 7515-7525(2019).
[23] Ruan L, Dias M P I, Wong E. Achieving Low-latency Human-to-machine (H2M) Applications: An Understanding of H2M Traffic for AI-facilitated Bandwidth Allocation[J]. IEEE Internet of Things Journal, 8, 626-635(2021).
[24] Wong E, Pubudini Imali Dias M, Ruan L. Predictive Resource Allocation for Tactile Internet Capable Passive Optical LANs[J]. Journal of Lightwave Technology, 35, 2629-2641(2017).
[25] Ruan L, Dias M P I, Wong E. Deep Neural Network Supervised Bandwidth Allocation Decisions for Low-latency Heterogeneous E-health Networks[J]. Journal of Lightwave Technology, 37, 4147-4154(2019).
[26] Bonk R, Borkowski R, Straub M et al. Demonstration of ONU Activation for In-service TDM-PON Allowing Uninterrupted Low-latency Transport Links[C], W3J.4(2019).
[27] Bertignono L, Ferrero V, Valvo M et al. Photon Ranging for Upstream ONU Activation Signaling in TWDM-PON[J]. Journal of Lightwave Technology, 34, 2064-2071(2016).
[29] Li J, Wang N, Zhu J L et al. First Real-time Symmetric 50 G TDM-PON Prototype with High Bandwidth and Low Latency[C], 1-4(2023).
[30] Clark K A, Zhou Z, Liu Z. Picosecond-precision Clock Synchronized Radio Access Networks Using Optical Clock Distribution and Clock Phase Caching[C], W4F.3(2023).
[31] Zhou Z, Wei J, Luo Y et al. Communications with Guaranteed Bandwidth and Low Latency Using Frequency-referenced Multiplexing[J]. Nature Electronics, 6, 694-702(2023).
[32] Zhang D, Liu D, Wu X et al. Progress of ITU-T Higher Speed Passive Optical Network (50G-PON) Standardization[J]. Journal of Optical Communications and Networking, 12, D99-D108(2020).
[33] Zhao Y S, Xue X W, Guo B L et al. White Rabbit Protocol Enhanced TDM-PON with Nanoseconds Clock and Data Recovery and Picoseconds Time Synchronization Accuracy[C], Tu2G.5(2022).
[34] Lantz B, Yu J, Bhardwaj A et al. SDN-controlled Dynamic Front-haul Provisioning, Emulated on Hardware and Virtual COSMOS Optical X-haul Testbeds[C], M2B.8(2021).
[35] Das S, Slyne F, Kilper D et al. Schedulers Synchronization Supporting Ultra Reliable Low Latency Communications (URLLC) in Cloud-RAN over Virtualised Mesh PON[C], 10938(2022).
[36] Lantz B, Díaz-Montiel A A, Yu J et al. Demonstration of Software-defined Packet-optical Network Emulation with Mininet-optical and ONOS[C], M3Z.9(2020).
[37] Das S, Ruffini M. PON Virtualisation with EAST-WEST Communications for Low-latency Converged Multi-access Edge Computing (MEC)[C], M2H.3(2020).
[38] Suzuki T, Kim S Y, Asaka K et al. PON Virtualization Including PHY Softwarization[C], W3G.3(2022).
[39] Suzuki T, Kim S Y, Kani J I et al. Virtualized PON based on Abstraction, Softwarization, and Service Chaining for Flexible and Agile Service Creations[J]. Journal of Optical Communications and Networking, 15, A39-A48(2023).
[40] Mafioletti D R, Slyne F, Giller R et al. A Novel Low-latency DBA for Virtualised PON Implemented through P4 In-network Processing[C], F4I.2(2021).
[41] Slyne F, Zeb S, Ruffini M. Stateful DBA Hypervisor Supporting SLAs with Low Latency & High Availability in Shared PON[C], W6A.48(2021).
[42] Ganguli A, Slyne F, Ruffini M. Real-time, Low Latency Virtual DBA Hypervisor for SLA-compliant Multi-service Operations over Shared Passive Optical Networks[C], T3F.2(2023).
[43] Das S, Slyne F, Ruffini M. Optimal Slicing of Virtualized Passive Optical Networks to Support Dense Deployment of Cloud-RAN and Multi-access Edge Computing[J]. IEEE Network, 36, 131-138(2022).
[44] Mondal S, Ruffini M. Optical Front/Mid-haul with Open Access-edge Server Deployment Framework for Sliced O-RAN[J]. IEEE Transactions on Network and Service Management, 19, 3202-3219(2022).
[45] Uzawa H, Honda K, Nakamura H et al. Dynamic Bandwidth Allocation Scheme for Network-slicing-based TDM-PON Toward the Beyond-5G Era[J]. Journal of Optical Communications and Networking, 12, A135-A143(2020).