[1] H. Qi, G. Casalena, S. Shi et al., "Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility," Diabetes 66(3), 763-778 (2017).
[2] S. Rovira-Llopis, C. Banuls, N. Diaz-Morales et al., "Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications," Redox Biol. 11, 637-645 (2017).
[3] A. Mayevsky, "Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives," Mitochondrion 9(3), 165-179 (2009).
[4] M. L. Boland, A. H. Chourasia, K. F. Macleod, "Mitochondrial dysfunction in cancer," Front. Oncol. 3, 292 (2013).
[5] S. W. Ballinger, "Mitochondrial dysfunction in cardiovascular disease," Free Radical Biol. Med. 38(10), 1278-1295 (2005).
[6] A. S. Manolis, A. A. Manolis, T. A. Manolis et al., "Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications," Med. Res. Rev. 41(1), 275-313 (2021).
[7] M. T. Lin, M. F. Beal, "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases," Nature 443(7113), 787-795 (2006).
[8] A. Johri, M. F. Beal, "Mitochondrial dysfunction in neurodegenerative diseases," J. Pharmacol. Exp. Therap. 342(3), 619-630 (2012).
[9] I. J. Martins, "Autoimmune disease and mitochondrial dysfunction in chronic diseases," Res. Chron. Dis. 1(1), 10-12 (2017).
[10] A. Mayevsky, "Shedding light on life: Optical assessment of mitochondrial function and tissue vitality in biology and medicine," J. Innov. Opt. Health Sci. 1(01), 71-83 (2008).
[11] A. Mayevsky, E. Barbiro-Michaely, "Use of NADH fluorescence to determine mitochondrial function in vivo," Int. J. Biochem. Cell Biol. 41(10), 1977-1988 (2009).
[12] A. Mayevsky, E. Pewzner, A. Deutsch et al., "Mitochondrial function and tissue vitality: Benchto- bedside real-time optical monitoring system," J. Biomed. Opt. 16(6), 067004 (2011).
[13] H. Shi, N. Sun, A. Mayevsky et al., "Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia," J. Biomed. Opt. 19(1), 017005 (2014).
[14] Y. Koga, M. Tanaka, S. Ohta et al., "Biochemistry of mitochondria, life and intervention 2010," Biochim. Biophys. Acta 1820(5), 551-552 (2012).
[15] J. Marín-García, A. T. Akhmedov, G. W. Moe, "Mitochondria in heart failure: The emerging role of mitochondrial dynamics," Heart Failure Rev. 18(4), 439-456 (2013).
[16] J. Vidugiriene, D. Leippe, M. Sobol et al., "Bioluminescent cell-based NAD (P)/NAD (P) H assays for rapid dinucleotide measurement and inhibitor screening," Assay Drug Dev. Technol. 12(9-10), 514-526 (2014).
[17] J. Niziński, L. Kamieniarz, P. Filberek et al., "Monitoring the skin NADH changes during ischaemia and reperfusion in humans," J. Med. Sci. 89(1), e405 (2020).
[18] J. Katarzynska, Z. Lipinski, T. Cholewinski et al., "Non-invasive evaluation of microcirculation and metabolic regulation using flow mediated skin fluorescence (FMSF): Technical aspects and methodology," Rev. Sci. Instrum. 90(10), 104104 (2019).
[19] L. Piotrowski, M. Urbaniak, B. Jedrzejczak et al., "Note: Flow mediated skin fluorescence - A novel technique for evaluation of cutaneous microcirculation," Rev. Sci. Instrum. 87(3), 036111 (2016).
[20] M. Hellmann, M. Tarnawska, M. Dudziak et al., "Reproducibility of flow mediated skin fluorescence to assess microvascular function," Microvasc. Res. 113, 60-64 (2017).
[21] M. Tarnawska, K. Dorniak, M. Kaszubowski et al., "A pilot study with flow mediated skin fluorescence: A novel device to assess microvascular endothelial function in coronary artery disease," Cardiol. J. 25(1), 120-127 (2018).
[22] J. Katarzynska, T. Cholewinski, L. Sieron et al., "Flowmotion Monitored by Flow Mediated Skin Fluorescence (FMSF): A tool for characterization of microcirculatory status," Front. Physiol. 11, 702 (2020).
[23] J. Katarzynska, A. Borkowska, P. Czajkowski et al., "Flow Mediated Skin Fluorescence technique reveals remarkable effect of age on microcirculation and metabolic regulation in type 1 diabetes," Microvasc. Res. 124, 19-24 (2019).
[24] J. Katarzynska, A. Borkowska, A. Los et al., "Flowmediated skin fluorescence (FMSF) technique for studying vascular complications in type 2 diabetes," J. Diabetes Sci. Technol. 14(3), 693 (2020).
[25] P. Miao, X. Lin, S. Feng et al., "In-vivo brain blood flow imaging based on laser speckle contrast imaging and synchrotron radiation microangiography," Laser Phys. 24(8), 085603 (2014).
[26] M. Roustit, J. L. Cracowski, "Assessment of endothelial and neurovascular function in human skin microcirculation," Trends Pharmacol. Sci. 34(7), 373-384 (2013).
[27] A. K. Dunn, H. Bolay, M. A. Moskowitz et al., "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21(3), 195-201 (2001).
[28] A. K. Dunn, "Laser speckle contrast imaging of cerebral blood flow," Ann. Biomed. Eng. 40(2), 367-377 (2012).
[29] D. Zhu, W. Lu, Y. Weng et al., "Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging," Appl. Opt. 46(10), 1911-1917 (2007).
[30] I. V. Meglinski, S. J. Matcher, "Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and nearinfrared spectral regions," Physiol. Meas. 23(4), 741 (2002).
[31] I. V. Meglinski, S. J. Matcher, "Computer simulation of the skin reflectance spectra," Comput. Methods Prog. Biomed. 70(2), 179-186 (2003).
[32] T. Maeda, N. Arakawa, M. Takahashi et al., "Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model," Opt. Rev. 17(3), 223-229 (2010).
[33] S. Wang, J. Zhao, H. Lui et al., "Monte Carlo simulation of in vivo Raman spectral Measurements of human skin with a multi-layered tissue optical model," J. Biophoton. 7(9), 703-712 (2014).
[34] L. Wang, S. L. Jacques, L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Prog. Biomed. 47(2), 131-146 (1995).
[35] Wang, S. L. Jacques, L. Zheng, "CONV - convolution for responses to a ˉnite diameter photon beam incident on multi-layered tissues," Comput. Methods Prog. Biomed. 54(3), 141-150 (1997).
[36] M. Balu, A. Mazhar, C. K. Hayakawa et al., "In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin," Biophys. J. 104(1), 258-267 (2013).
[37] I. Nishidate, N. Tanaka, T. Kawase et al., "Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera," J. Biomed. Opt. 16(8), 086012 (2011).
[38] V. V. Dremin, A. V. Dunaev, "How the melanin concentration in the skin affects the fluorescencespectroscopy signal formation," J. Opt. Technol. 83(1), 43-48 (2016).
[39] O. Bugaj, J. Zieliński, K. Kusy et al., "The effect of exercise on the skin content of the reduced form of NAD and its response to transient ischemia and reperfusion in highly trained athletes," Front. Physiol. 10, 600 (2019).
[40] D. Li, W. Zheng, J. Y. Qu, "Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence," Opt. Lett. 33(20), 2365-2367 (2008).
[41] J. A. Palero, A. N. Bader, H. S. de Bruijn et al., "In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy," Biomed. Opt. Express 2(5), 1030-1039 (2011).
[42] J. Huang, S. Zhang, S. Gnyawali et al., "Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation," J. Biomed. Opt. 20(3), 036001 (2015).
[43] H. Buiteveld, J. H. M. Hakvoort, M. Donze, "Optical properties of pure water," Ocean Optics XII, International Society for Optics and Photonics, Vol. 2258, pp. 174-183 (1994).
[44] V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, "Tissue optics, light distribution, and spectroscopy," Opt. Eng. 33(10), 3178-3188 (1994).
[45] V. V. Tuchin, "Light scattering study of tissues," Phys.-Uspekhi 40(5), 495 (1997).
[46] S. Wang, J. Zhao, H. Lui et al., "Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin," J. Photochem. Photobiol. B: Biol. 105(3), 183-189 (2011).
[47] D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky et al., "Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation," J. Phys. D: Appl. Phys. 36(14), 1722 (2003).
[48] D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt. 9(2), 339-346 (2004).
[49] I. V. Meglinski, D. Y. Churmakov, "Spatial localization of biosensor fluorescence signals in human skin under the effect of equalization of the refractive index of the surrounding medium," Opt. Spectrosc. 96(6), 946-951 (2004).
[50] A. Mayevsky, J. Sonn, M. Luger-Hamer et al., "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17(2), 96-116 (2003).