• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1700003 (2023)
Zhijian Wu1,2 and Xuefeng Peng2,*
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo , 315211Zhejiang , China
  • 2College of Science & Technology, Ningbo University, Ningbo , 315211Zhejiang , China
  • show less
    DOI: 10.3788/LOP222260 Cite this Article Set citation alerts
    Zhijian Wu, Xuefeng Peng. Research Progress of Mid-Infrared Supercontinuum and Its Coherence Based on Chalcogenide Fibers[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700003 Copy Citation Text show less
    SC generation in 13 cm-long Ge-As-Se fiber pumped with different wavelength[20]
    Fig. 1. SC generation in 13 cm-long Ge-As-Se fiber pumped with different wavelength[20]
    Transmission loss characteristic of Ge-Sb-S fiber[24]. (a) Loss diagram of Ge-Sb-S fiber (inset: output spot at 1.55 μm); (b) transmission efficiency of Ge-Sb-S fiber (inset: cross section of Ge-Sb-S fiber)
    Fig. 2. Transmission loss characteristic of Ge-Sb-S fiber[24]. (a) Loss diagram of Ge-Sb-S fiber (inset: output spot at 1.55 μm); (b) transmission efficiency of Ge-Sb-S fiber (inset: cross section of Ge-Sb-S fiber)
    The SC of Ge-Se-Te fiber[9]. (a) Optical fiber preform and cross section of fiber under electron microscope; (b) loss and dispersion of fiber; (c) experimental setup for enerating SC; (d) SC generated under experiment; (e) SC generated under simulation
    Fig. 3. The SC of Ge-Se-Te fiber[9]. (a) Optical fiber preform and cross section of fiber under electron microscope; (b) loss and dispersion of fiber; (c) experimental setup for enerating SC; (d) SC generated under experiment; (e) SC generated under simulation
    Structure and optical properties of all-solid hybrid MOF[30]. (a) Structure of As2Se3-AsSe2-As2S5 fiber; (b) transmittance for three glasses; (c) dispersion curves of As2Se3-AsSe2-As2S5 fiber with different core diameters
    Fig. 4. Structure and optical properties of all-solid hybrid MOF[30]. (a) Structure of As2Se3-AsSe2-As2S5 fiber; (b) transmittance for three glasses; (c) dispersion curves of As2Se3-AsSe2-As2S5 fiber with different core diameters
    Optical properties and structure of Ge-Sb-Se MOF[31]. (a) Cross-section of fiber; (b) output of SC
    Fig. 5. Optical properties and structure of Ge-Sb-Se MOF[31]. (a) Cross-section of fiber; (b) output of SC
    Structure and optical properties of four-hole chalcohalide suspended core fiber[35]. (a) Cross section of four hole chalcohalide suspended core fiber; (b) transmittance for two glasses; (c) represents the SC produced by the experiment and simulation of four hole chalcohalide suspended core fiber at different wavelengths
    Fig. 6. Structure and optical properties of four-hole chalcohalide suspended core fiber[35]. (a) Cross section of four hole chalcohalide suspended core fiber; (b) transmittance for two glasses; (c) represents the SC produced by the experiment and simulation of four hole chalcohalide suspended core fiber at different wavelengths
    Optical properties of Ge-As-Se-Te tapered fiber[38]. (a) Structure diagram of tapered fiber (inset: represent untapered, taper waist, and transition region respectively); (b) loss diagram of fiber (inset: transmittance of core glass); (c) dispersion curves of Ge-As-Se-Te fiber with different fiber core diameters; (d) output of SC
    Fig. 7. Optical properties of Ge-As-Se-Te tapered fiber[38]. (a) Structure diagram of tapered fiber (inset: represent untapered, taper waist, and transition region respectively); (b) loss diagram of fiber (inset: transmittance of core glass); (c) dispersion curves of Ge-As-Se-Te fiber with different fiber core diameters; (d) output of SC
    Structure diagram of cascade pump[43]
    Fig. 8. Structure diagram of cascade pump[43]
    Output SC of SiO2-ZBLAN-As2Se3 PCF[51]. (a) Cascade system structure for generating SC; (b) SC generated in ZBLAN fiber; (c) SC generated in As2Se3 fiber
    Fig. 9. Output SC of SiO2-ZBLAN-As2Se3 PCF[51]. (a) Cascade system structure for generating SC; (b) SC generated in ZBLAN fiber; (c) SC generated in As2Se3 fiber
    Double-cladding Ge-As-Se-Te fiber[55]. (a) SC output under different pump conditions; (b) first-order coherence
    Fig. 10. Double-cladding Ge-As-Se-Te fiber[55]. (a) SC output under different pump conditions; (b) first-order coherence
    GeS2-GaS3-CsI chalcohalide microstructure fiber[56]. (a) Cross section of optical fiber; (b) dispersion curves at different apertures; (c) SC output and coherence curve
    Fig. 11. GeS2-GaS3-CsI chalcohalide microstructure fiber[56]. (a) Cross section of optical fiber; (b) dispersion curves at different apertures; (c) SC output and coherence curve
    Double-cladding Ge-As-Se-Te tapered fiber[11]. (a) Structure and refractive index profile; (b) dispersion curve; (c) SC output; (d) coherence curve
    Fig. 12. Double-cladding Ge-As-Se-Te tapered fiber[11]. (a) Structure and refractive index profile; (b) dispersion curve; (c) SC output; (d) coherence curve
    CompositionTg /℃Tx /℃n0 @4 μm
    Ge15Sb18S672544242.3237
    Ge15Sb20.5S64.52504042.3399
    Table 1. Physical parameters of low loss chalcogenide fiber matrix materials
    Fiber typeGlass compositionFiber length /cmPump condition

    Spectral

    coverage /μm

    Ref.
    Step-index fiberGe-Se-Te4.48.15 μm/200 kW1.7-189
    Ge-As-Se135 μm/25 mW1.6-11.420
    Ge-As-S154.8 μm/170 fs/100 kHz2.5-7.523
    Ge-Sb-S224 μm/150 fs/1 kHz1.56-7.5924
    Microstructurd fiberGe-Sb-Se/Ge-Se13 μm/50 fs/90 pJ1.6-731
    As-Se0.52.56 μm/50fs/10 kW1-1434
    Ge-As-Se-I/As2S3-5 μm/150 fs1.6-1235
    Tapered fiberGe-As-Se-Te75.5 μm/19 mW2-12.738
    As-Se12.4 μm/90 mW/170 MHz1.4-4.239
    Table 2. Main research results of SC spectrum generation with three different types in recent year
    Fiber systemPumpSC bandwidthPowerRef.
    As2S32.19 μm/1 ns/100 kHz2-4 μm143 mW41
    As2S32.45 μm/40 ps/10 MHz1.9-4.8 μm565 mW42
    Ge12As24Se644.0 μm/330 fs/21 MHz1.8-10 μm1.26 mW22
    ZBLAN-As2S3-As2Se3Tm-doped fiber amplifier2-6.5 μm1.39 W10
    As2Se3Er-doped ZBLAN fiber amplifier2-5 μm825 mW44
    InF3-As2S3Er-doped fiber amplifier1.97-5.1 μm440 mW46
    ZBLAN-As2S3Tm-doped fiber amplifier2-6.5 μm1.13 W47
    SiO2-ZBLAN-As38Se621.55 μm/3 ns/30 kHz2-7 μm6.5 mW49
    SiO2-ZBLAN-As2Se3Er-doped fiber amplifier2-10 μm16 mW51
    Table 3. Main achievements of output power of chalcogenide fibers in recent years
    Fiber typeGlass compositionFiber length /cmPump conditionCoherent spectrum /μmRef.
    Step-index fiberAs2S3353.6 μm/1.15 W2.5-544
    Ge-As-Se-Te195 μm/150 fs/1 kHz3.5-10.555
    Microstructurd fiberGeS2-GaS3-CsI1.53 μm/50 fs/3 nJ1.45-5.9556
    Ge-As-Se-Te/As2S3165 μm/24 mW2-13.257
    Ge-As-Se/Ge-As-S17 μm/50 fs/6 kW3.8-1458
    Tapered fiberAsSe2/As2S532.6 μm/10.12 kW/1 kHz1.6-3.761
    Ge-As-Se-Te106 μm/150 fs/1 kHz1.8-1411
    Table 4. Main achievements of SC coherence of chalcogenide fibers with different types in recent years
    Zhijian Wu, Xuefeng Peng. Research Progress of Mid-Infrared Supercontinuum and Its Coherence Based on Chalcogenide Fibers[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700003
    Download Citation