[1] Yao J P. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 284, 3723-3736(2011). http://www.sciencedirect.com/science/article/pii/S0030401811002549
Yao J P. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 284, 3723-3736(2011). http://www.sciencedirect.com/science/article/pii/S0030401811002549
[2] Tearney G J, Brezinski M E, Bouma B E et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 276, 2037-2039(1997). http://www.tandfonline.com/servlet/linkout?suffix=cit0011&dbid=8&doi=10.1080%2F05704928.2017.1324876&key=9197265
Tearney G J, Brezinski M E, Bouma B E et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 276, 2037-2039(1997). http://www.tandfonline.com/servlet/linkout?suffix=cit0011&dbid=8&doi=10.1080%2F05704928.2017.1324876&key=9197265
[3] Latkin A I, Boscolo S, Bhamber R S et al. Doubling of optical signals using triangular pulses[J]. Journal of the Optical Society of America B, 26, 1492-1496(2009). http://www.opticsinfobase.org/abstract.cfm?uri=josab-26-8-1492
Latkin A I, Boscolo S, Bhamber R S et al. Doubling of optical signals using triangular pulses[J]. Journal of the Optical Society of America B, 26, 1492-1496(2009). http://www.opticsinfobase.org/abstract.cfm?uri=josab-26-8-1492
[4] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 4, 760-766(2010).
Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 4, 760-766(2010).
[5] Lin T, Zhao S H, Zhu Z H et al. Multi-band frequency conversion scheme based on single optical frequency comb for satellite communication[J]. Acta Optica Sinica, 37, 0623002(2017).
Lin T, Zhao S H, Zhu Z H et al. Multi-band frequency conversion scheme based on single optical frequency comb for satellite communication[J]. Acta Optica Sinica, 37, 0623002(2017).
[6] He Y T, Jiang Y, Zi Y J et al. Frequency doubled triangular waveform generation based on injection locking and time-domain synthesis[J]. Chinese Journal of Lasers, 45, 0101005(2018).
He Y T, Jiang Y, Zi Y J et al. Frequency doubled triangular waveform generation based on injection locking and time-domain synthesis[J]. Chinese Journal of Lasers, 45, 0101005(2018).
[7] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 27, 314-335(2009).
Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 27, 314-335(2009).
[8] Agrawal G P, Govind P[M]. Agrawal. 非线性光纤光学原理及应用, 61-198(2010).
[M]. Nonlinear fiber optics, fourth edition & applications of nonlinear fiber optics, 61-198(2010).
Agrawal G P, Govind P[M]. Agrawal. 非线性光纤光学原理及应用, 61-198(2010).
[M]. Nonlinear fiber optics, fourth edition & applications of nonlinear fiber optics, 61-198(2010).
[9] Latkin A I, Boscolo S, Bhamber R S et al. Optical frequency conversion, pulse compression and signal copying using triangular pulses. [C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE, 4729140(2008).
Latkin A I, Boscolo S, Bhamber R S et al. Optical frequency conversion, pulse compression and signal copying using triangular pulses. [C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE, 4729140(2008).
[10] Zhao G Q. Research on the generation and application of optical triangular pulses in microwave photonics[D]. Beijing: Beijing Jiaotong University, 41-52(2016).
Zhao G Q. Research on the generation and application of optical triangular pulses in microwave photonics[D]. Beijing: Beijing Jiaotong University, 41-52(2016).
[11] Bhamber R S, Latkin A I, Boscolo S et al. All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses. [C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE, 4729368(2008).
Bhamber R S, Latkin A I, Boscolo S et al. All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses. [C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE, 4729368(2008).
[12] Wang H. Experimental research of triangular optical pulse generation in normal dispersive fiber[J]. Acta Physica Sinica, 61, 124212(2012).
Wang H. Experimental research of triangular optical pulse generation in normal dispersive fiber[J]. Acta Physica Sinica, 61, 124212(2012).
[13] Ye J, Yan L S, Pan W et al. Photonic generation of triangular-shaped pulses based on frequency-to-time conversion[J]. Optics Letters, 36, 1458-1460(2011). http://www.ncbi.nlm.nih.gov/pubmed/21499389
Ye J, Yan L S, Pan W et al. Photonic generation of triangular-shaped pulses based on frequency-to-time conversion[J]. Optics Letters, 36, 1458-1460(2011). http://www.ncbi.nlm.nih.gov/pubmed/21499389
[14] Hao Z, Li J, Wang C Y et al. Performance study of optical triangular-shaped pulse generation with full duty cycle[J]. Chinese Optics Letters, 15, 110601(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170912000068jPmSpV
Hao Z, Li J, Wang C Y et al. Performance study of optical triangular-shaped pulse generation with full duty cycle[J]. Chinese Optics Letters, 15, 110601(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170912000068jPmSpV
[15] Jiang Y, Ma C, Bai G F et al. Photonic microwave waveforms generation based on time-domain processing[J]. Optics Express, 23, 19442-19452(2015). http://www.ncbi.nlm.nih.gov/pubmed/26367603/
Jiang Y, Ma C, Bai G F et al. Photonic microwave waveforms generation based on time-domain processing[J]. Optics Express, 23, 19442-19452(2015). http://www.ncbi.nlm.nih.gov/pubmed/26367603/
[16] Ma C, Jiang Y, Bai G F et al. Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator[J]. Optics Communications, 363, 207-210(2016). http://www.sciencedirect.com/science/article/pii/S0030401815302388
Ma C, Jiang Y, Bai G F et al. Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator[J]. Optics Communications, 363, 207-210(2016). http://www.sciencedirect.com/science/article/pii/S0030401815302388
[17] Luo H, Jiang Y, Wu T W et al. Triangular waveform and sinusoidal signal generator based on optoelectronic microwave oscillator[J]. Acta Optica Sinica, 38, 0306002(2018).
Luo H, Jiang Y, Wu T W et al. Triangular waveform and sinusoidal signal generator based on optoelectronic microwave oscillator[J]. Acta Optica Sinica, 38, 0306002(2018).
[18] Zhang J, Wang M G, Shao C G et al. Photonic frequency-multiplying millimeter-wave generation based on dual-parallel Mach-Zehnder modulator[J]. Acta Optica Sinica, 34, 0306004(2014).
Zhang J, Wang M G, Shao C G et al. Photonic frequency-multiplying millimeter-wave generation based on dual-parallel Mach-Zehnder modulator[J]. Acta Optica Sinica, 34, 0306004(2014).
[19] Li J, Ning T G, Pei L et al. Experimental demonstration on triangular-shaped pulse train generation based on harmonic fitting[J]. Acta Physica Sinica, 63, 154210(2014).
Li J, Ning T G, Pei L et al. Experimental demonstration on triangular-shaped pulse train generation based on harmonic fitting[J]. Acta Physica Sinica, 63, 154210(2014).
[20] Zhang F Z, Ge X Z, Pan S L. Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal[J]. Optics Letters, 38, 4491-4493(2013). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=195995
Zhang F Z, Ge X Z, Pan S L. Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal[J]. Optics Letters, 38, 4491-4493(2013). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=195995
[21] Li J, Ning T, Pei L et al. Photonic generation of triangular waveform signals by using a dual-parallel Mach-Zehnder modulator[J]. Optics Letters, 36, 3828-3830(2011). http://europepmc.org/abstract/med/21964111
Li J, Ning T, Pei L et al. Photonic generation of triangular waveform signals by using a dual-parallel Mach-Zehnder modulator[J]. Optics Letters, 36, 3828-3830(2011). http://europepmc.org/abstract/med/21964111
[22] Bai G F, Hu L, Jiang Y et al. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements[J]. Optics Communications, 396, 134-140(2017). http://www.sciencedirect.com/science/article/pii/S0030401817302316
Bai G F, Hu L, Jiang Y et al. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements[J]. Optics Communications, 396, 134-140(2017). http://www.sciencedirect.com/science/article/pii/S0030401817302316