[1] Libraty D H, Patkar C and Torres B 2012 Staphylococcus aureus reactivation osteomyelitis after 75 years New Engl. J. Med. 366 481–2
[2] Macheras G A, Kateros K, Galanakos S P, Koutsostathis S D, Kontou E and Papadakis S A 2011 The long-term results of a two-stage protocol for revision of an infected total knee replacement J. Bone Joint Surg. Br. 93-B 1487–92
[3] O’Neill J 2016 Tackling drug-resistant infections globally: final report and recommendations (HM Government) (available at: https://amr-review.org/sites/default/files/ 160525_Final%20paper_with%20cover.pdf)
[4] Zmistowski B, Karam J A, Durinka J B, Casper D S and Parvizi J 2013 Periprosthetic joint infection increases the risk of one-year mortality J. Bone Joint Surg. 95 2177–84
[5] Sandiford N A, Franceschini M and Kendoff D 2021 The burden of prosthetic joint infection (PJI) Ann. Joint 6 25
[6] Schwarz E M et al 2021 Adjuvant antibiotic-loaded bone cement: concerns with current use and research to make it work J. Orthop. Res. 39 227–39
[7] Laxminarayan R et al 2013 Antibiotic resistance—the need for global solutions Lancet Infect. Dis. 13 1057–98
[8] Holmes A H, Moore L S P, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin P J and Piddock L J V 2016 Understanding the mechanisms and drivers of antimicrobial resistance Lancet 387 176–87
[9] Nikaido H 2009 Multidrug resistance in bacteria Annu. Rev. Biochem. 78 119–46
[10] Yeramaneni S, Robinson C and Hostin R 2016 Impact of spine surgery complications on costs associated with management of adult spinal deformity Curr. Rev. Musculoskelet. Med. 9 327–32
[11] Sousa A et al 2018 Economic impact of prosthetic joint infection-an evaluation within the Portuguese National Health System J. Bone Joint Infection 3 197–202
[12] Arciola C R, Campoccia D and Montanaro L 2018 Implant infections: adhesion, biofilm formation and immune evasion Nat. Rev. Microbiol. 16 397–409
[13] Masters E A et al 2019 Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy Bone Res. 7 20
[14] Jiao J Y, Zhang S T, Qu X H and Yue B 2021 Recent advances in research on antibacterial metals and alloys as implant materials Front. Cell. Infect. Microbiol. 11 693939
[15] Mitra I, Bose S, Dernell W S, Dasgupta N, Eckstrand C, Herrick J, Yaszemski M J, Goodman S B and Bandyopadhyay A 2021 3D printing in alloy design to improve biocompatibility in metallic implants Mater. Today 45 20–34
[16] Guschlbauer R, Burkhardt A K, Fu Z W and K?rner C 2020 Effect of the oxygen content of pure copper powder on selective electron beam melting Mater. Sci. Eng. A 77 139106
[17] Paradis P F, Ishikawa T and Yoda S 2002 Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace Int. J. Thermophys. 23 825–42
[18] Newby E B, Yadroitsava I and Kouprianoff D 2017 In-situ alloying of TI6AL4V-x% CU structures by direct metal laser sintering (available at: http://hdl.handle.net/11462/ 1714)
[19] Ciliveri S and Bandyopadhyay A 2023 Understanding the influence of alloying elements on the print quality of powder bed fusion-based metal additive manufacturing: Ta and Cu addition to Ti alloy Virtual Phys. Prototyp. 18 e2248464
[20] Onuike B and Bandyopadhyay A 2019 Bond strength measurement for additively manufactured inconel 718-GRCop84 copper alloy bimetallic joints Addit. Manuf. 27 576–85
[21] Onuike B and Bandyopadhyay A 2020 Functional bimetallic joints of Ti6Al4V to SS410 Addit. Manuf. 31 100931
[22] Standard test method for linearly reciprocating ball-on-flat sliding wear (available at: www.astm.org/g0133-05r16. html) (Accessed 11 May 2022)
[23] ISO 10993–6:2016(en) Biological evaluation of medical devices—Part 6: Tests for local effects after implantation (available at: www.iso.org/obp/ui/#iso:std:iso:10993:-6:ed- 3:v1:en) (Accessed 7 March 2023)
[24] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P and Witten I H 2009 The WEKA data mining software: an update ACM SIGKDD Explor. Newsl. 11 10–18
[25] Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri K W, Schindelin J, Cardona A and Sebastian Seung H 2017 Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification Bioinformatics 33 2424–6
[26] Polan D F, Brady S L and Kaufman R A 2016 Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study Phys. Med. Biol. 61 6553–69
[27] Wysocki B, Maj P, Sitek R, Buhagiar J, Kurzyd?owski K J and ′Swie?szkowski W 2017 Laser and electron beam additive manufacturing methods of fabricating titanium bone implants Appl. Sci. 7 657
[28] Fio?ek A, Zimowski S, Kopia A and Moskalewicz T 2019 The influence of electrophoretic deposition parameters and heat treatment on the microstructure and tribological properties of nanocomposite Si3N4/PEEK 708 coatings on titanium alloy Coatings 9 530
[29] Ciliveri S and Bandyopadhyay A 2022 Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants J. Mech. Behav. Biomed. Mater. 126 105023
[30] Bathini U, Srivatsan T S, Patnaik A and Quick T 2010 A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: influence of orientation and microstructure J. Mater. Eng. Perform. 19 1172–82
[31] Bandyopadhyay A, Ciliveri S, Guariento S, Zuckschwerdt N and Hogg W W 2023 Fatigue behavior of additively manufactured Ti3Al2V alloy Mater. Sci. Addit. Manuf. 2 1705
[32] Zhang L Z, Chang M, Beck C A, Schwarz E M and Boyce B F 2016 Analysis of new bone, cartilage, and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm Bone Res. 4 15037
[33] Itabashi T, Narita K, Ono A, Wada K, Tanaka T, Kumagai G, Yamauchi R, Nakane A and Ishibashi Y 2017 Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation Bone Joint Res. 6 108–12
[34] Liu J Q et al 2020 Nano-modified titanium implant materials: a way toward improved antibacterial properties Front. Bioeng. Biotechnol. 8 576969
[35] Gristina A G 1987 Biomaterial-centered infection: microbial adhesion versus tissue integration Science 237 1588–95
[36] Pham V T H et al 2016 ‘Race for the surface’: eukaryotic cells can win ACS Appl. Mater. Interfaces 8 22025–31
[37] Francolini I, Vuotto C, Piozzi A and Donelli G 2017 Antifouling and antimicrobial biomaterials: an overview APMIS 125 392–417
[38] Ferraris S and Spriano S 2016 Antibacterial titanium surfaces for medical implants Mater. Sci. Eng. C 61 965–78
[39] Li H F, Qiu K J, Zhou F Y, Li L and Zheng Y F 2016 Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application Sci. Rep. 6 37475
[40] Bolzoni L, Alqattan M, Peters L, Alshammari Y and Yang F 2020 Ternary Ti alloys functionalised with antibacterial activity Sci. Rep. 10 22201
[41] Liu R, Memarzadeh K, Chang B, Zhang Y M, Ma Z, Allaker R P, Ren L and Yang K 2016 Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis Sci. Rep. 6 29985
[42] Liu J, Li F B, Liu C, Wang H Y, Ren B R, Yang K and Zhang E L 2014 Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys Mater. Sci. Eng. C 35 392–400
[43] Bergemann C, Zaatreh S, Wegner K, Arndt K, Podbielski A, Bader R, Prinz C, Lembke C and Barbara Nebe J 2017 Copper as an alternative antimicrobial coating for implants-an in vitro study World J. Transplant. 7 193–202
[44] Yoon K Y, Byeon J H, Park J H and Hwang J 2007 Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles Sci. Total Environ. 373 572–5
[45] Raffi M, Mehrwan A, Bhatti T M, Akhter J I, Hameed A, Yawar W and Hasan M M U 2010 Investigations into the antibacterial behavior of copper nanoparticles against Escherichia Coli. Ann. Microbiol. 60 75–80
[46] Ma Z, Ren L, Liu R, Yang K, Zhang Y, Liao Z H, Liu W Q, Qi M and Misra R D K 2015 Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy J. Mater. Sci. Technol. 31 723–32
[47] Ren L, Ma Z, Li M, Zhang Y, Liu W Q, Liao Z H and Yang K 2014 Antibacterial properties of Ti–6Al–4V–xCu alloys J. Mater. Sci. Technol. 30 699–705
[48] Liu H, Tang Y L, Zhang S Y, Liu H, Wang Z J, Li Y, Wang X L, Ren L, Yang K and Qin L 2022 Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology Bioact. Mater. 8 381–95
[49] Zhuang Y F, Ren L, Zhang S Y, Wei X, Yang K and Dai K R 2021 Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus Acta Biomater. 119 472–84
[50] Yi Z, Liu Y, Ma Y D, Liu Z G, Sun H, Zhou X, Kang R, Cristino V A M and Wang Q 2022 Surface treatment of 3D printed Cu-bearing Ti alloy scaffolds for application in tissue engineering Mater. Des. 213 110350
[51] Tao S C, Xu J L, Yuan L, Luo J M and Zheng Y F 2020 Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti–3Cu alloys J. Alloys Compd. 812 152142
[52] Zhao X, Zhou X, Sun H, Shi H X, Song Y P, Wang Q, Zhang G P and Xu D K 2022 3D printed Ti-5Cu alloy accelerates osteogenic differentiation of MC3T3-E1 cells by stimulating the M2 phenotype polarization of macrophages Front. Immunol. 13 1001526
[53] Liu Z G, Liu Y, Liu S, Wang D X, Jin J, Sun L D, Wang Q and Yi Z 2021 The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bearing TC4 alloy Mater. Des. 207 109831
[54] Milan P B, Khamseh S, Zarrintaj P, Ramezanzadeh B, Badawi M, Morisset S, Vahabi H, Saeb M R and Mozafari M 2020 Copper-enriched diamond-like carbon coatings promote regeneration at the bone–implant interface Heliyon 6 E03798
[55] Gollwitzer H, Haenle M, Mittelmeier W, Heidenau F and Harrasser N 2018 A biocompatible sol–gel derived titania coating for medical implants with antibacterial modification by copper integration AMB Express 8 24
[56] Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N and Bose S 2019 Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration Addit. Manuf. 28 259–66
[57] Bose S, Traxel K D, Vu A A and Bandyopadhyay A 2019 Clinical significance of three-dimensional printed biomaterials and biomedical devices MRS Bull. 44 494–504
[58] Liu S Y and Shin Y C 2019 Additive manufacturing of Ti6Al4V alloy: a review Mater. Des. 164 107552
[59] Louren?o M L, Cardoso G C, Dos Santos Jorge Sousa K, Donato T A G, Pontes F M L and Grandini C R 2020 Development of novel Ti-Mo-Mn alloys for biomedical applications Sci. Rep. 10 6298
[60] Zhu Y Q, Xu T, Wei Q H, Mai J W, Yang H X, Zhang H R, Shimada T, Kitamura T and Zhang T Y 2021 Linear-superelastic Ti-Nb nanocomposite alloys with ultralow modulus via high-throughput phase-field design and machine learning npj Comput. Math. 7 205
[61] Lin J X, Ozan S, Li Y C, Ping D H, Tong X, Li G Y and Wen C E 2016 Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications Sci. Rep. 6 37901
[62] Pei X et al 2021 Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: optimization of the architecture for orthopedic implant applications Acta Biomater. 126 485–95
[63] Attar H, L?ber L, Funk A, Calin M, Zhang L C, Prashanth K G, Scudino S, Zhang Y S and Eckert J 2015 Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting Mater. Sci. Eng. A 625 350–6
[64] Barriobero-Vila P, Gussone J, Stark A, Schell N, Haubrich J and Requena G 2018 Peritectic titanium alloys for 3D printing Nat. Commun. 9 3426
[65] Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B and Eckert J 2015 Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study Mater. Des. 86 703–8
[66] Levine B R, Sporer S, Poggie R A, Della Valle C J and Jacobs J J 2006 Experimental and clinical performance of porous tantalum in orthopedic surgery Biomaterials 27 4671–81
[67] Bose S and Bandyopadhyay A 2017 Current challenges and future needs in biomaterials and devices for bone disorders Materials for Bone Disorders ed S Bose and A Bandyopadhyay (Elsevier) pp 517–26
[68] Mullen L, Stamp R C, Brooks W K, Jones E and Sutcliffe C J 2009 Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications J. Biomed. Mater. Res. B 89B 325–34
[69] López-Valverde N, López-Valverde A, Aragoneses J M, de Sousa B M, Rodrigues M J and Ramírez J M 2021 Systematic review and meta-analysis of the effectiveness of calcium-phosphate coating on the osseointegration of titanium implants Materials 14 3015
[70] Yang Y Z, Kim K H and Ong J L 2005 A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying Biomaterials 26 327–37
[71] Mitra D, Kang E T and Neoh K G 2020 Antimicrobial copper-based materials and coatings: potential multifaceted biomedical applications ACS Appl. Mater. Interfaces 12 21159–82
[72] Santo C E, Lam E W, Elowsky C G, Quaranta D, Domaille D W, Chang C J and Grass G 2011 Bacterial killing by dry metallic copper surfaces Appl. Environ. Microbiol. 77 794–802
[73] Grass G, Rensing C and Solioz M 2011 Metallic copper as an antimicrobial surface Appl. Environ. Microbiol. 77 1541–7
[74] O’Driscoll N H, Cushnie T P T, Matthews K H and Lamb A J 2018 Colistin causes profound morphological alteration but minimal cytoplasmic membrane perforation in populations of Escherichia coli and Pseudomonas aeruginosa Arch. Microbiol. 200 793–802
[75] Krishna N G, George R P and Philip J 2020 Anomalous enhancement of corrosion resistance and antibacterial property of commercially pure Titanium (CP-Ti) with nanoscale rutile titania film Corros. Sci. 172 108678
[76] Lee J W, Lin D J, Ju C P, Yin H S, Chuang C C and Lin J H C 2009 In-vitro and in-vivo evaluation of a new Ti-15Mo-1Bi alloy J. Biomed. Mater. Res. B 91B 643–50
[77] Do Prado R F et al 2018 In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy PLoS One 13 e0196169
[78] Lin D J, Chuang C C, Lin J H C, Lee J W, Ju C P and Yin H S 2007 Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur Biomaterials 28 2582–9
[79] Johansson C B and Albrektsson T 1991 A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone Clin. Oral Implants Res. 2 24–29
[80] Kolli R P and Devaraj A 2018 A review of metastable beta titanium alloys Metals 8 506
[81] Bansal G, Singh D B, Virk H S, Devrani A and Bhandari A 2020 Microstructural characterization, applications and process study of various additive manufacturing process: a review Mater. Today Proc. 26 833–7
[82] Cardozo D 2016 An intuitive approach to understanding the resting membrane potential Adv. Phys. Educ. 40 543–7
[83] Chrysafides S M, Bordes S J and Sharma S 2023 Physiology, resting potential StatPearls (StatPearls Publishing) PMID: 30855922
[84] Lord H L, Zhan W Q and Pawliszyn J 2010 Fundamentals and applications of needle trap devices: a critical review Anal. Chim. Acta 677 3–18
[85] Hallab N, Merritt K and Jacobs J J 2001 Metal sensitivity in patients with orthopaedic implants J. Bone Joint Surg. Am. 83 428–36
[86] Pritchett J W 2012 Adverse reaction to metal debris: metallosis of the resurfaced hip Curr. Orthop. Pract. 23 50–58
[87] Avila J D, Stenberg K, Bose S and Bandyopadhyay A 2021 Hydroxyapatite reinforced Ti6Al4V composites for load-bearing implants Acta Biomater. 123 379–92
[88] Sahasrabudhe H, Bose S and Bandyopadhyay A 2018 Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: processing and wear induced damage evaluation Acta Biomater. 66 118–28
[89] Ran C and Chen P W 2018 Dynamic shear deformation and failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe alloys Materials 11 76
[90] Bandyopadhyay A, Mitra I, Goodman S B, Kumar M and Bose S 2023 Improving biocompatibility for next generation of metallic implants Prog. Mater. Sci. 133 101053
[91] Bandyopadhyay A, Mitra I, Avila J D, Upadhyayula M and Bose S 2023 Porous metal implants: processing, properties, and challenges Int. J. Extrem. Manuf. 5 032014
[92] Bose S, Ke D X, Sahasrabudhe H and Bandyopadhyay A 2018 Additive manufacturing of biomaterials Prog. Mater. Sci. 93 45–111