[1] HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J].Nature, 2018, 556(7702): 483-486.
[2] PHARE C T, LEE Y H D, CARDENAS J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J].Nature photonics, 2015, 9(8): 511-514.
[3] HAN J H, BOEUF F, FUJIKATA J, et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator[J]. Nature photonics, 2017, 11(8): 486-490.
[4] LEE M, KATZ H E, ERBEN C, et al. Broadband modulation of light by using an electro-optic polymer[J]. Science, 2002, 298(5597): 1401-1403.
[5] ALLOATTI L, PALMER R, DIEBOLD S, et al. 100 GHz silicon-organic hybrid modulator[J]. Light: science & applications, 2014, 3(5): e173.
[6] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104.
[7] HE M, XU M, REN Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits-1 and beyond[J]. Nature photonics, 2019, 13: 359-364.
[8] AHMED A N R, SHI S, MERCANTE A, et al. High-efficiency lithium niobate modulator for K band operation[J]. APL photonics, 2020, 5: 091302.
[9] PRASHANTA K, CHRISTIAN R, KEVIN L, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J].Optica, 2021, 8: 357-363.
[10] GHIONE G. Semiconductor devices for high-speed optoelectronics[M]. Oxford: Oxford University, 2009.
[11] AOKI K, KONDOU J, MITOMI O, et al. Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode[J]. Japanese journal of applied physics, 2006, 45: 8696-8698.
[12] GU J H, WU B Y. Analysis on the microwave attenuation coefficient of traveling-wave electrodes with complicated cross-sections in Ti: LiNbO3 optical modulators[J].Acta electronica sinica, 1998, 26(6): 58-61.
[13] RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE journal of selected topics in quantum electronics, 2018, 24(4): 1-14.
[14] FRANKEL Y, GUPTA S, VALDMANIS J A, et al. Terahertz attenuation and dispersion characteristics of coplanar transmission lines[J]. IEEE transactions on microwave theory and techniques, 1991, 39(6): 910-916.
[15] YU L Y, SHANG J M, LUO K W, et al. Design of high-speed mid-infrared electro-optic modulator based on thin film lithium niobate[J]. IEEE photonics journal, 2022, 14(2): 1-6.
[16] ANDREW J M, YAO P, SHI S Y, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J].Optics express, 2016, 24: 15590-15595.
[17] HAN H, YANG F, LIU C, et al. High-performance electro-optical Mach-Zehnder modulators in a silicon nitride-lithium niobate thin-film hybrid platform[J]. Photonics, 2022, 9: 500.
[18] SUN S, HE M, XU M, et al. Hybrid silicon and lithium niobate modulator[J]. IEEE journal of selected topics in quantum electronics, 2021, 27(3): 1-12.
[19] PAN B C, HU J Y, HUANG Y S, et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator opticalmodulators at the 2-μm wavelength[J]. Optics express,2021, 29: 17710-17717.
[20] CAI J, GUO C, LU C, et al. Design optimization of silicon and lithium niobate hybrid integrated traveling-wave Mach-Zehnder modulator[J]. IEEE photonics journal, 2021, 13(4): 1-6.
[21] ZHU D, SHAO L B, YU M, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in optics and photonics, 2021, 13: 242-352.
[22] WEIGEL P O, VALDEZ F, ZHAO J, et al. Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators[J]. Journal of physics: photonics, 2021, 3(1): 012001.