Mengxue Pan, Ning Qu, Yeru Xia, Deyong Yang, Hongyu Wang, Wenlong Liu. Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2217001

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 59, Issue 22, 2217001 (2022)

Fig. 1. Network structure

Fig. 2. Convolution residual block and residual block. (a) Convolution residual block; (b) residual block

Fig. 3. Sub-pixel convolution

Fig. 4. Image 1 reconstruction results with different algorithms. (a) Original image; (b) Bicubic; (c) FSRCNN; (d) EDSR; (e) SRResNet; (f) proposed algorithm

Fig. 5. Image 2 reconstruction results with different algorithms. (a) Original image; (b) Bicubic; (c) FSRCNN; (d) EDSR; (e) SRResNet; (f) proposed algorithm

Fig. 6. Image 3 reconstruction results with different algorithms. (a) Original image; (b) Bicubic; (c) FSRCNN; (d) EDSR; (e) SRResNet; (f) proposed algorithm
|
Table 1. Convolution residual block parameter setting
|
Table 2. Image subjective evaluation form
|
Table 3. Comparison of subjective evaluation values of super-resolution reconstruction methods
|
Table 4. Comparison of PSNR values of various super-resolution reconstruction
|
Table 5. Comparison of energy gradient values of various super-resolution reconstruction

Set citation alerts for the article
Please enter your email address