• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210011 (2023)
Guobo Xie1, Jingjing Tang1, Zhiyi Lin1,*, Xiaofeng Zheng1, and Ming Fang2
Author Affiliations
  • 1School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • 2Transmission Branch of Yunnan Power Grid Co., Ltd., Kunming 650011, Yunnan, China
  • show less
    DOI: 10.3788/LOP221388 Cite this Article Set citation alerts
    Guobo Xie, Jingjing Tang, Zhiyi Lin, Xiaofeng Zheng, Ming Fang. Improved YOLOv4 Helmet Detection Algorithm Under Complex Scenarios[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210011 Copy Citation Text show less
    References

    [1] Li Q Y, Wang J B, Wang H W et al. Study on impact resistance of industrial safety helmet[J]. Journal of Safety Science and Technology, 17, 182-186(2021).

    [2] Wang Y X, Wang Z, Wu B et al. Research review of safety helmet wearing detection algorithm in intelligent construction site[J]. Journal of Wuhan University of Technology, 43, 56-62(2021).

    [3] Liu X H, Ye X N. Skin color detection and Hu moments in helmet recognition research[J]. Journal of East China University of Science and Technology (Natural Science Edition), 40, 365-370(2014).

    [4] Wang F B, Liu M Z, Tu P. Spot ablated by femtosecond laser classification based on cascaded support vector machine[J]. Chinese Journal of Lasers, 48, 0602108(2021).

    [5] Rubaiyat A H M, Toma T T, Kalantari-Khandani M et al. Automatic detection of helmet uses for construction safety[C], 135-142(2016).

    [6] Fan Z M, Peng C B, Dai L C et al. A deep learning-based ensemble method for helmet-wearing detection[J]. PeerJ Computer Science, 6, e311(2020).

    [7] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [8] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).

    [9] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [10] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).

    [11] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767

    [12] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection. https://arxiv.org/abs/2004.10934

    [13] Xu K, Deng C. Research on helmet wear identification based on improved YOLOv3[J]. Laser & Optoelectronics Progress, 58, 0615002(2021).

    [14] Zhou M D, Fang Z L, Zhao B et al. Safety helmet wearing detection and recognition based on YOLOv4[C], 798-802(2021).

    [15] Deng B Y, Lei X C, Ye M. Safety helmet detection method based on YOLO v4[C], 155-158(2020).

    [16] Yang Y B, Li D. Lightweight helmet wearing detection algorithm of improved YOLOv5[J]. Computer Engineering and Applications, 58, 201-207(2022).

    [17] Cao J, Guo Z B, Pan L Z et al. Detection of safety belt wearing in aerial work[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 37, 92-99(2022).

    [18] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [19] Yang M K, Yu K, Zhang C et al. DenseASPP for semantic segmentation in street scenes[C], 3684-3692(2018).

    [20] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [21] Lei X D, Wang H T, Zhao Z Z. Small-sample airborne LiDAR point cloud classification based on transfer learning and fully convolutional network[J]. Chinese Journal of Lasers, 48, 1610001(2021).

    Guobo Xie, Jingjing Tang, Zhiyi Lin, Xiaofeng Zheng, Ming Fang. Improved YOLOv4 Helmet Detection Algorithm Under Complex Scenarios[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210011
    Download Citation