• Advanced Photonics
  • Vol. 3, Issue 2, 024003 (2021)
Abdul Rahim1,2,*, Artur Hermans1,2, Benjamin Wohlfeil3, Despoina Petousi3..., Bart Kuyken1,2, Dries Van Thourhout1,2 and Roel Baets1,2,*|Show fewer author(s)
Author Affiliations
  • 1Ghent University, Photonics Research Group, Department of Information Technology, Ghent, Belgium
  • 2Ghent University, IMEC and Center for Nano- and Biophotonics, Ghent, Belgium
  • 3ADVA Optical Networking, Berlin, Germany
  • show less
    DOI: 10.1117/1.AP.3.2.024003 Cite this Article Set citation alerts
    Abdul Rahim, Artur Hermans, Benjamin Wohlfeil, Despoina Petousi, Bart Kuyken, Dries Van Thourhout, Roel Baets, "Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies," Adv. Photon. 3, 024003 (2021) Copy Citation Text show less
    References

    [1] M. Romagnoli et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater., 3, 392-414(2018).

    [2] J. Witzens. High-speed silicon photonics modulators. Proc. IEEE, 106, 2158-2182(2018).

    [3] B. Milivojevic et al. 112  Gb/s DP-QPSK transmission over 2427-km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver(2013).

    [4] S. S. Azadeh et al. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express, 23, 23526-23550(2015). https://doi.org/10.1364/OE.23.023526

    [5] M. Webster et al. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers(2015).

    [6] A. Narasimha et al. A 40-Gb/s QSFP optoelectronic transceiver in a 0.13-μm CMOS silicon-on-insulator technology, OMK7(2008). https://doi.org/10.1109/OFC.2008.4528356

    [7] Y. Sobu et al. 70 Gbaud operation of all-silicon Mach–Zehnder modulator based on forward-biased PIN diodes and passive equalizer, MD2-2(2019).

    [8] D. Patel et al. High-speed compact silicon photonic Michelson interferometric modulator. Opt. Express, 22, 26788-26802(2014).

    [9] J. Sun et al. A 128  Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019). https://doi.org/10.1109/JLT.2018.2878327

    [10] K. Goi et al. Silicon Mach–Zehnder modulator using low-loss phase shifter with bottom PN junction formed by restricted-depth doping. IEICE Electron. Express, 10, 20130552(2013).

    [11] X. Tu et al. Silicon optical modulator with shield coplanar waveguide electrodes. Opt. Express, 22, 23724-23731(2014).

    [12] J. Van Campenhout et al. Low-voltage, low-loss, multi-Gb/s silicon micro-ring modulator based on a MOS capacitor(2012).

    [13] X. Xiao et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express, 21, 4116-4125(2013).

    [14] M. Li et al. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications. Photonics Res., 6, 109-116(2018). https://doi.org/10.1364/PRJ.6.000109

    [15] X. Tu et al. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express, 21, 12776-12782(2013). https://doi.org/10.1364/OE.21.012776

    [16] D. J. Thomson et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol. Lett., 24, 234-236(2012). https://doi.org/10.1109/LPT.2011.2177081

    [17] D. Patel et al. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express, 23, 14263-14287(2015).

    [18] E. Timurdogan et al. An ultralow power athermal silicon modulator. Nat. Commun., 5, 4008(2014).

    [19] J. Ding et al. Electro-optical response analysis of a 40  Gb/s silicon Mach-Zehnder optical modulator. J. Lightwave Technol., 31, 2434-2440(2013). https://doi.org/10.1109/JLT.2013.2262522

    [20] S. A. Srinivasan et al. 50  Gb/s C-band GeSi waveguide electro-absorption modulator(2016).

    [21] G. T. Reed et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).

    [22] D. Petousi et al. Monolithically integrated high-extinction-ratio MZM with a segmented driver in photonic BiCMOS. IEEE Photonics Technol. Lett., 28, 2866-2869(2016).

    [23] A. Chen, E. E. Murphy. Broadband Optical Modulators: Science, Technology, and Applications(2012).

    [24] S. K. Kim et al. Theoretical and experimental study of 10  Gb/s transmission performance using 1.55-μmLiNbO3-based transmitters with adjustable extinction ratio and chirp. J. Lightwave Technol., 17, 1320-1325(1999). https://doi.org/10.1109/50.779152

    [25] N. Qi et al. Co-design and demonstration of a 25-Gb/s silicon-photonic Mach–Zehnder modulator with a CMOS-based high-swing driver. IEEE J. Sel. Top. Quantum Electron., 22, 131-140(2016). https://doi.org/10.1109/JSTQE.2016.2602102

    [26] L. Chen, P. Dong, Y. Chen. Chirp and dispersion tolerance of a single-drive push–pull silicon modulator at 28  Gb/s. IEEE Photonics Technol. Lett., 24, 936-938(2012). https://doi.org/10.1109/LPT.2012.2191149

    [27] M. Jacques et al. Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms. Opt. Express, 26, 22471-22490(2018).

    [28] K. Goi et al. 20-Gbps BPSK silicon Mach–Zehnder modulator with excellent chirp-free performance, 238-239(2012).

    [29] R. Li et al. High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators. Opt. Express, 25, 13222-13229(2017).

    [30] K. Goi et al. 11-Gb/s 80-km transmission performance of zero-chirp silicon Mach–Zehnder modulator. Opt. Express, 20, B350-B356(2012). https://doi.org/10.1364/OE.20.00B350

    [31] J. Liu et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photonics, 2, 433-437(2008).

    [32] D. Marris-Morini et al. Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers. Opt. Express, 21, 22471-22475(2013). https://doi.org/10.1364/OE.21.022471

    [33] J. C. Rosenberg et al. A 25 Gbps silicon microring modulator based on an interleaved junction. Opt. Express, 20, 26411-26423(2012).

    [34] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [35] Q. Cheng et al. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [36] M. Asghari, A. V. Krishnamoorthy. Energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [37] F. Boeuf et al. Benchmarking Si, SiGe, and III-V/Si hybrid SIS optical modulators for datacenter applications. J. Lightwave Technol., 35, 4047-4055(2017).

    [38] N.-N. Feng et al. 30 GHz Ge electro-absorption modulator integrated with 3  μm silicon-on-insulator waveguide. Opt. Express, 19, 7062-7067(2011). https://doi.org/10.1364/OE.19.007062

    [39] A. Rahim et al. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).

    [40] A. Meighan et al. Design of 100 GHz-class Mach–Zehnder modulators in a generic indium phosphide platform(2020).

    [41] S. Lange et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J. Lightwave Technol., 36, 97-102(2018).

    [42] M. Smit, K. Williams, J. van der Tol. Past, present, and future of InP-based photonic integration. APL Photonics, 4, 050901(2019).

    [43] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [44] P. De Dobbelaere et al. Advanced silicon photonics technology platform leveraging a semiconductor supply chain, 34.1.1-34.1.4(2017).

    [45] D. J. Shin et al. Integration of silicon photonics into DRAM process(2013).

    [46] R. Meade et al. TeraPHY: a high-density electronic-photonic Chiplet for optical I/O from a multi-chip module(2019).

    [47] F. Boeuf et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform(2015).

    [48] S. Fathololoumi et al. 1.6Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications(2020).

    [49] X. Chen et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 106, 2101-2116(2018).

    [50] C. Doerr et al. Single-chip silicon photonics 100-Gb/s coherent transceiver(2014).

    [51] J. C. Rosenberg et al. Low-power 30 Gbps silicon microring modulator(2011).

    [52] C. Xiong et al. Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 3, 1060-1065(2016). https://doi.org/10.1364/OPTICA.3.001060

    [53] Cisco annual internet report (2018-2023) white paper—Cisco.

    [54] P. J. Winzer, D. T. Neilson, A. R. Chraplyvy. “Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Opt. Express, 26, 24190-24239(2018).

    [55] P. Dong et al. 50-Gb/s silicon quadrature phase-shift keying modulator. Opt. Express, 20, 21181-21186(2012). https://doi.org/10.1364/OE.20.021181

    [56] P. Dong et al. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett., 37, 1178-1180(2012).

    [57] 802.3bs-2017—IEEE Standard for Ethernet Amendment 10: media access control parameters, physical layers, and management parameters for 200  Gb/s and 400  Gb/s operation,”. https://standards.ieee.org/standard/802_3bs-2017.html

    [58] X. Zhou, R. Urata, H. Liu. Beyond 1  Tb/s intra-data center interconnect technology: IM-DD OR coherent?. J. Lightwave Technol., 38, 475-484(2020). https://doi.org/10.1109/JLT.2019.2956779

    [59] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [60] W. Bogaerts et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol., 23, 401-412(2005).

    [61] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [62] Q. Xu et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [63] G. T. Reed, C. J. Png. Silicon optical modulators. Mater. Today, 8, 40-50(2005).

    [64] C. K. Tang, G. T. Reed. Highly efficient optical phase modulator in SOI waveguides. Electron. Lett., 31, 451-452(1995).

    [65] T. Baba et al. 25-Gb/s broadband silicon modulator with 0.31-V·cmVπL based on forward-biased PIN diodes embedded with passive equalizer. Opt. Express, 23, 32950-32960(2015). https://doi.org/10.1364/OE.23.032950

    [66] S. Tanaka et al. Ultralow-power (1.59  mW/Gbps), 56-Gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach–Zehnder modulator and 28-nm CMOS driver. J. Lightwave Technol., 36, 1275-1280(2018). https://doi.org/10.1109/JLT.2018.2799965

    [67] S. Akiyama et al. High-performance silicon modulator for integrated transceivers fabricated on 300-mm wafer, P.2.8(2014).

    [68] M. Webster et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters, WB1(2014).

    [69] J. Fujikata et al. High-performance MOS-capacitor-type Si optical modulator and surface-illumination-type Ge photodetector for optical interconnection. Jpn. J. Appl. Phys., 55, 04EC01(2016).

    [70] M. Sodagar et al. Compact, 15  Gb/s electro-optic modulator through carrier accumulation in a hybrid Si/SiO2/Si microdisk. Opt. Express, 23, 28306-28315(2015). https://doi.org/10.1364/OE.23.028306

    [71] H. Yi et al. Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission. Opt. Express, 20, 27562-27568(2012).

    [72] J.-B. You et al. 12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric P–N diode. Opt. Express, 16, 18340-18344(2008).

    [73] D. J. Thomson et al. High speed silicon optical modulator with self aligned fabrication process. Opt. Express, 18, 19064-19069(2010).

    [74] D. J. Thomson et al. High performance Mach–Zehnder-based silicon optical modulators. IEEE J. Sel. Top. Quantum Electron., 19, 85-94(2013).

    [75] N.-N. Feng et al. High speed carrier-depletion modulators with 1.4  V-cmVπL integrated on 0.25  μm silicon-on-insulator waveguides. Opt. Express, 18, 7994-7999(2010). https://doi.org/10.1364/OE.18.007994

    [76] P. Dong et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express, 17, 22484-22490(2009). https://doi.org/10.1364/OE.17.022484

    [77] D. J. Thomson et al. High contrast 40  Gbit/s optical modulation in silicon. Opt. Express, 19, 11507-11516(2011). https://doi.org/10.1364/OE.19.011507

    [78] D. Marris-Morini et al. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt. Express, 16, 334-339(2008).

    [79] M. Ziebell et al. 40  Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt. Express, 20, 10591-10596(2012). https://doi.org/10.1364/OE.20.010591

    [80] H. Xu et al. High speed silicon Mach–Zehnder modulator based on interleaved PN junctions. Opt. Express, 20, 15093-15099(2012).

    [81] H. Yu, W. Bogaerts, A. De Keersgieter. Optimization of ion implantation condition for depletion-type silicon optical modulators. IEEE J. Quantum Electron., 46, 1763-1768(2010).

    [82] H. Xu et al. 44  Gbit/s silicon Mach–Zehnder modulator based on interleaved PN junctions, 201-203(2012). https://doi.org/10.1109/GROUP4.2012.6324133

    [83] Z.-Y. Li et al. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt. Express, 17, 15947-15958(2009).

    [84] M. Ziebell et al. Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions. Opt. Express, 19, 14690-14695(2011).

    [85] F. Y. Gardes et al. 40  Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express, 19, 11804-11814(2011). https://doi.org/10.1364/OE.19.011804

    [86] X. Xiao et al. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photonics Technol. Lett., 24, 1712-1714(2012). https://doi.org/10.1109/LPT.2012.2213244

    [87] X. Xiao et al. High speed silicon photonic modulators(2017).

    [88] A. Irace, G. Breglio, A. Cutolo. All-silicon optoelectronic modulator with 1 GHz switching capability. Electron. Lett., 39, 232-233(2003).

    [89] R. Soref, J. Larenzo. All-silicon active and passive guided-wave components for λ=13 and 1.6  μm. IEEE J. Quantum Electron., 22, 873-879(1986). https://doi.org/10.1109/JQE.1986.1073057

    [90] A. Cutolo et al. Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide. J. Lightwave Technol., 15, 505-518(1997).

    [91] S. Akiyama et al. Compact PIN-diode-based silicon modulator using side-wall-grating waveguide. IEEE J. Sel. Top. Quantum Electron., 19, 74-84(2013).

    [92] S. J. Spector et al. High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode, CFH4(2008).

    [93] A. Sciuto et al. Design, fabrication, and testing of an integrated Si-based light modulator. J. Lightwave Technol., 21, 228-235(2003).

    [94] S. J. Spector et al. Operation and optimization of silicon-diode-based optical modulators. IEEE J. Sel. Top. Quantum Electron., 16, 165-172(2010).

    [95] J. C. Rosenberg et al. Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver(2011).

    [96] C. E. Png et al. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J. Lightwave Technol., 22, 1573-1582(2004).

    [97] Q. Xu et al. 12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express, 15, 430-436(2007). https://doi.org/10.1364/OE.15.000430

    [98] A. Shakoor et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt. Express, 22, 28623-28634(2014).

    [99] W. M. J. Green et al. Ultra-compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator. Opt. Express, 15, 17106-17113(2007). https://doi.org/10.1364/OE.15.017106

    [100] S. Meister et al. High-speed Fabry–Pérot optical modulator in silicon with 3-μm diode. J. Lightwave Technol., 33, 878-881(2015). https://doi.org/10.1109/JLT.2015.2390077

    [101] L. Liao et al. High speed silicon Mach–Zehnder modulator. Opt. Express, 13, 3129-3135(2005).

    [102] A. Liu et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature, 427, 615-618(2004).

    [103] K. Debnath et al. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photonics Res., 6, 373-379(2018).

    [104] A. Abraham et al. Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor, WB2(2014).

    [105] E. Li et al. One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Opt. Lett., 43, 4429-4432(2018).

    [106] L. Liao et al. 40  Gbit/s silicon optical modulator for high-speed applications. Electron. Lett., 43, 1196-1197(2007). https://doi.org/10.1049/el:20072253

    [107] Y. Maegami et al. High-efficiency strip-loaded waveguide based silicon Mach–Zehnder modulator with vertical p-n junction phase shifter. Opt. Express, 25, 31407-31416(2017).

    [108] A. Liu et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express, 15, 660-668(2007).

    [109] F. Y. Gardes et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express, 13, 8845-8854(2005).

    [110] M. R. Watts et al. Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 16, 159-164(2010).

    [111] M. R. Watts et al. Vertical junction silicon microdisk modulators and switches. Opt. Express, 19, 21989-22003(2011).

    [112] H. C. Nguyen et al. Compact and fast photonic crystal silicon optical modulators. Opt. Express, 20, 22465-22474(2012).

    [113] Y. Terada et al. Full C-band Si photonic crystal waveguide modulator. Opt. Lett., 42, 5110-5112(2017).

    [114] Y. Hinakura, H. Arai, T. Baba. 64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching. Opt. Express, 27, 14321-14327(2019).

    [115] R. Dubé-Demers, S. LaRochelle, W. Shi. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 3, 622-627(2016).

    [116] P. Dong, L. Chen, Y. K. Chen. High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators. Opt. Express, 20, 6163-6169(2012).

    [117] M. Streshinsky et al. Low power 50  Gb/s silicon traveling wave Mach–Zehnder modulator near 1300 nm. Opt. Express, 21, 30350-30357(2013). https://doi.org/10.1364/OE.21.030350

    [118] T. Baehr-Jones et al. Ultralow drive voltage silicon traveling-wave modulator. Opt. Express, 20, 12014-12020(2012).

    [119] R. Ding et al. A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonics J., 6, 6600608(2014). https://doi.org/10.1109/JPHOT.2014.2326656

    [120] X. Tu et al. Fabrication of low loss and high speed silicon optical modulator using doping compensation method. Opt. Express, 19, 18029-18035(2011).

    [121] X. Li et al. Highly efficient silicon Michelson interferometer modulators. IEEE Photonics Technol. Lett., 25, 407-409(2013).

    [122] K. Li et al. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica, 7, 1514-1516(2020).

    [123] H. Zhang et al. 800  Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res., 8, 1776-1782(2020). https://doi.org/10.1364/PRJ.396815

    [124] D. Pérez-Galacho et al. QPSK modulation in the O-band using a single dual-drive Mach–Zehnder silicon modulator. J. Lightwave Technol., 36, 3935-3940(2018).

    [125] F. Fresi et al. Silicon photonics integrated 16-QAM modulator exploiting only binary driving electronics(2016).

    [126] S. Zhalehpour et al. All-silicon IQ modulator for 100 GBaud 32QAM transmissions(2019).

    [127] L. Deniel et al. DAC-less PAM-4 generation in the O-band using a silicon Mach-Zehnder modulator. Opt. Express, 27, 9740-9748(2019).

    [128] Y. Kim et al. Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators. Sci. Rep., 4, 4683(2014).

    [129] C. G. Bottenfield, V. A. Thomas, S. E. Ralph. Silicon photonic modulator linearity and optimization for microwave photonic links. IEEE J. Sel. Top. Quantum Electron., 25, 3400110(2019).

    [130] L. Chrostowski et al. Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits(2014).

    [131] W. Bogaerts et al. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).

    [132] B. Guha, B. B. C. Kyotoku, M. Lipson. CMOS-compatible athermal silicon microring resonators. Opt. Express, 18, 3487-3493(2010).

    [133] D. Feng et al. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J. Sel. Top. Quantum Electron., 19, 64-73(2013).

    [134] S. Gupta et al. 50-GHz Ge waveguide electro-absorption modulator integrated in a 220 nm SOI photonics platform(2015).

    [135] D. Feng et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt. Express, 20, 22224-22232(2012).

    [136] S. A. Srinivasan et al. 56  Gb/s Germanium waveguide electro-absorption modulator. J. Lightwave Technol., 34, 419-424(2016). https://doi.org/10.1109/JLT.2015.2478601

    [137] J. Verbist et al. 100  Gb/s DAC-less and DSP-free transmitters using GeSi EAMs for short-reach optical interconnects(2018).

    [138] A. E.-J. Lim et al. Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p–i–n photodetector. Opt. Express, 19, 5040-5046(2011).

    [139] L. Mastronardi et al. High-speed Si/GeSi hetero-structure electro absorption modulator. Opt. Express, 26, 6663-6673(2018).

    [140] Y. Tang, J. D. Peters, J. E. Bowers. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3  μm transmission. Opt. Express, 20, 11529-11535(2012). https://doi.org/10.1364/OE.20.011529

    [141] P. Chaisakul et al. Integrated germanium optical interconnects on silicon substrates. Nat. Photonics, 8, 482-488(2014).

    [142] P. Chaisakul et al. Recent progress in GeSi electro-absorption modulators. J. Lightwave Technol., 15, 014601(2014).

    [143] J. Frigerio et al. Giant electro-optic effect in Ge/SiGe coupled quantum wells. Sci. Rep., 5, 15398(2015).

    [144] Y.-H. Kuo et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 437, 1334-1336(2005).

    [145] D. A. B. Miller et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett., 53, 2173-2176(1984).

    [146] D. A. B. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346-396(2017).

    [147] S. Ren et al. Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. IEEE Photonics Technol. Lett., 24, 461-463(2012).

    [148] P. Chaisakul et al. 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt. Express, 20, 3219-3224(2012).

    [149] R. M. Audet et al. Surface-normal Ge/SiGe asymmetric Fabry–Perot optical modulators fabricated on silicon substrates. J. Lightwave Technol., 31, 3995-4003(2013).

    [150] E. H. Edwards et al. Ge/SiGe asymmetric Fabry–Perot quantum well electroabsorption modulators. Opt. Express, 20, 29164-29173(2012).

    [151] P. Chaisakul et al. Recent progress on Ge/SiGe quantum well optical modulators, detectors, and emitters for optical interconnects. Photonics, 6, 24(2019).

    [152] S. A. Srinivasan et al. High absorption contrast quantum confined Stark effect in ultra-thin Ge/SiGe quantum well stacks grown on Si. IEEE J. Quantum Electron., 56, 5200207(2020).

    [153] M. Liu et al. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [154] M. A. Giambra et al. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express, 27, 20145-20155(2019).

    [155] M. Mohsin et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt. Express, 22, 15292-15297(2014).

    [156] M. Liu, X. Yin, X. Zhang. Double-layer graphene optical modulator. Nano Lett., 12, 1482-1485(2012).

    [157] Y. Hu et al. Broadband 10  Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev., 10, 307-316(2016). https://doi.org/10.1002/lpor.201500250

    [158] C. T. Phare et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 9, 511-514(2015).

    [159] L. A. Shiramin et al. High extinction ratio hybrid graphene-silicon photonic crystal switch. IEEE Photonics Technol. Lett., 30, 157-160(2018).

    [160] V. Sorianello et al. Chirp management in silicon-graphene electro absorption modulators. Opt. Express, 25, 19371-19381(2017).

    [161] J.-H. Han et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [162] J. Witzens. Modulators make efficiency leap. Nat. Photonics, 11, 459-462(2017).

    [163] T. Hiraki et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photonics, 11, 482-485(2017).

    [164] Q. Li et al. Si racetrack modulator with III-V/Si hybrid MOS optical phase shifter(2019).

    [165] Q. Li et al. Efficient optical modulator by reverse-biased III-V/Si hybrid MOS capacitor based on FK effect and carrier depletion(2019).

    [166] T. Komljenovic et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE, 106, 2246-2257(2018).

    [167] L. Cao et al. Hybrid amorphous silicon (a-Si:H)-LiNbO3 electro-optic modulator. Opt. Commun., 330, 40-44(2014). https://doi.org/10.1016/j.optcom.2014.05.021

    [168] A. Rao et al. Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [169] L. Chen et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [170] S. Jin et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett., 28, 736-739(2016). https://doi.org/10.1109/LPT.2015.2507136

    [171] A. Rao et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).

    [172] N. Boynton et al. A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express, 28, 1868-1884(2020).

    [173] P. O. Weigel et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express, 26, 23728-23739(2018).

    [174] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit s1 and beyond. Nat. Photonics, 13, 359-364(2019). https://doi.org/10.1038/s41566-019-0378-6

    [175] M. Li, H. X. Tang. Strong Pockels materials. Nat. Mater., 18, 9-11(2019).

    [176] S. Abel et al. A hybrid barium titanate-silicon photonics platform for ultraefficient electro-optic tuning. J. Lightwave Technol., 34, 1688-1693(2016).

    [177] C. Xiong et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett., 14, 1419-1425(2014). https://doi.org/10.1021/nl404513p

    [178] F. Eltes et al. Low-loss BaTiO3Si waveguides for nonlinear integrated photonics. ACS Photonics, 3, 1698-1703(2016). https://doi.org/10.1021/acsphotonics.6b00350

    [179] S. Abel et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater., 18, 42-47(2019).

    [180] A. Messner et al. Integrated ferroelectric BaTiO3/Si plasmonic modulator for 100  Gbit/s and beyond(2018).

    [181] F. Eltes et al. A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform, 24.5.1-24.5.4(2017).

    [182] F. Eltes et al. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol., 37, 1456-1462(2019). https://doi.org/10.1109/JLT.2019.2893500

    [183] K. Alexander et al. Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides(2017).

    [184] K. Alexander et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat Commun, 9, 3444(2018).

    [185] K. Alexander. Integrated silicon nitride photonics with highly nonlinear thin films and 2D materials: properties and devices(2018).

    [186] C. Koos et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [187] D. Korn et al. Lasing in silicon–organic hybrid waveguides. Nat. Commun., 7, 10864(2016).

    [188] C. Koos et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightwave Technol., 34, 256-268(2016).

    [189] R. Palmer et al. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material. J. Lightwave Technol., 32, 2726-2734(2014).

    [190] C. Kieninger et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 5, 739-748(2018).

    [191] L. Alloatti et al. 100 GHz silicon–organic hybrid modulator. Light Sci. Appl., 3, e173(2014).

    [192] S. Koeber et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci. Appl., 4, e255(2015).

    [193] H. Zwickel et al. Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120  Gbit/s. Opt. Express, 25, 23784-23800(2017). https://doi.org/10.1364/OE.25.023784

    [194] C. Kieninger et al. Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. Opt. Express, 28, 24693-24707(2020).

    [195] C. Kieninger et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85°C. Opt. Express, 26, 27955-27964(2018).

    [196] S. Wolf et al. Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100  Gbit/s on-off keying. Sci. Rep., 8, 2598(2018). https://doi.org/10.1038/s41598-017-19061-8

    [197] T. Baehr-Jones et al. Optical modulation and detection in slotted Silicon waveguides. Opt. Express, 13, 5216-5226(2005).

    [198] H. Figi et al. Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices. J. Opt. Soc. Am. B, 28, 2291-2300(2011).

    [199] D. Korn et al. Electro-optic organic crystal silicon high-speed modulator. IEEE Photonics J., 6, 2700109(2014).

    [200] S. Ummethala et al. Capacitively coupled silicon-organic hybrid modulator for 200 Gbit/s PAM-4 signaling(2019).

    [201] V. Sorianello et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 12, 40-44(2018).

    [202] M. Midrio et al. Graphene-based optical phase modulation of waveguide transverse electric modes. Photonics Res., 2, A34-A40(2014).

    [203] H. Dalir et al. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 3, 1564-1568(2016).

    [204] I. Datta et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics, 14, 256-262(2020).

    [205] S. Ye et al. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron., 23, 76-80(2017).

    [206] C. Xu et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt. Express, 20, 22398-22405(2012).

    [207] M. Mohsin et al. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep., 5, 10967(2015).

    [208] L. Yang et al. Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide. Opt. Lett., 38, 2512-2515(2013).

    [209] J. Leuthold et al. High-speed, low-power optical modulators in silicon, We.D2.1(2013).

    [210] A. Moscoso-Mártir et al. Co-integration of a temperature tolerant low impedance resonantly enhanced silicon photonics modulator, 101-102(2017).

    [211] X. Li et al. Single-drive high-speed lumped depletion-type modulators toward 10  fJ/bit energy consumption. Photonics Res., 5, 134-142(2017). https://doi.org/10.1364/PRJ.5.000134

    [212] A. Giuglea et al. Comparison of segmented and traveling-wave electro-optical transmitters based on silicon photonics Mach–Zehnder modulators(2018).

    [213] S. Lin et al. Electronic-photonic co-optimization of high-speed silicon photonic transmitters. J. Lightwave Technol., 35, 4766-4780(2017).

    [214] D. J. Thomson et al. Optical detection and modulation at 2  μm -2.5  μm in silicon. Opt. Express, 22, 10825-10830(2014). https://doi.org/10.1364/OE.22.010825

    [215] M. Montesinos-Ballester et al. Optical modulation in Ge-rich SiGe waveguides in the mid-infrared wavelength range up to 11  μm. Commun. Mater., 1, 6(2020). https://doi.org/10.1038/s43246-019-0003-8

    [216] J. P. Lorenzo, R. A. Soref. 1.3  μm electro-optic silicon switch. Appl. Phys. Lett., 51, 6-8(1987). https://doi.org/10.1063/1.98887

    [217] B. Chmielak et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Opt. Express, 19, 17212-17219(2011).

    [218] R. S. Jacobsen et al. Strained silicon as a new electro-optic material. Nature, 441, 199-202(2006).

    [219] P. Damas et al. Wavelength dependence of Pockels effect in strained silicon waveguides. Opt. Express, 22, 22095-22100(2014).

    [220] Y. Shiraki, Y. Shiraki, N. Usami et al. Silicon-Germanium (SiGe) Nanostructures(2011).

    [221] L. Vivien, L. E. Pavesi. Handbook of Silicon Photonics(2013).

    [222] M. Zeiler et al. Radiation damage in silicon photonic Mach–Zehnder modulators and photodiodes. IEEE Trans. Nucl. Sci., 64, 2794-2801(2017).

    [223] Photonic integration and photonics-electronics convergence on silicon platform.

    [224] U. Chakraborty et al. Cryogenic operation of silicon photonic modulators based on the DC Kerr effect. Optica, 7, 1385-1390(2020).

    [225] M. Gehl et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica, 4, 374-382(2017).

    [226] S. M. Jackson et al. A novel optical phase modulator design suitable for phased arrays. J. Lightwave Technol., 16, 2016-2019(1998).

    [227] J. Shin et al. Epitaxial growth technology for optical interconnect based on bulk-Si platform(2013).

    [228] O. Marshall et al. Heterogeneous integration on silicon photonics. Proc. IEEE, 106, 2258-2269(2018).

    [229] S. Kodama, T. Yoshimatsu, H. Ito. 500  Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator. Electron. Lett., 40, 555-556(2004). https://doi.org/10.1049/el:20040391

    [230] S. A. Srinivasan. Advanced Germanium devices for optical interconnects(2017).

    [231] A. Melikyan et al. Differential drive I/Q modulator based on silicon photonic electro-absorption modulators. J. Lightwave Technol., 38, 2872-2876(2020).

    [232] Y. Tong et al. Integrated germanium-on-silicon Franz–Keldysh vector modulator used with a Kramers–Kronig receiver. Opt. Lett., 43, 4333-4336(2018).

    [233] J. Verbist et al. Real-time and DSP-free 128  Gb/s PAM-4 link using a binary driven silicon photonic transmitter. J. Lightwave Technol., 37, 274-280(2019). https://doi.org/10.1109/JLT.2018.2877461

    [234] K. M. Rabe et al. Modern Physics of Ferroelectrics: Essential Background, 1-30(2007).

    [235] M. Veithen, X. Gonze, P. Ghosez. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B, 71, 125107(2005).

    [236] H. Buhay et al. Pulsed laser deposition and ferroelectric characterization of bismuth titanate films. Appl. Phys. Lett., 58, 1470-1472(1991).

    [237] D. J. R. Appleby et al. Ferroelectric properties in thin film barium titanate grown using pulsed laser deposition. J. Appl. Phys., 116, 124105(2014).

    [238] T. Kobayashi et al. Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition. Thin Solid Films, 489, 74-78(2005).

    [239] Z. Bi, Z. Zhang, P. Fan. Characterization of PZT ferroelectric thin films by RF-magnetron sputtering. J. Phys. Conf. Ser., 61, 120-124(2007).

    [240] T. Li et al. Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films. Appl. Phys. Lett., 68, 616-618(1996). https://doi.org/10.1063/1.116486

    [241] F. Zhang et al. Atomic layer deposition of Pb(Zr,Ti)Ox on 4H-SiC for metal-ferroelectric-insulator-semiconductor diodes. J. Appl. Phys., 109, 124109(2011).

    [242] E. L. Wooten et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron., 6, 69-82(2000).

    [243] M. Zhang et al. Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ(2018).

    [244] K. Noguchi, O. Mitomi, H. Miyazawa. Millimeter-wave Ti:LiNbO3 optical modulators. J. Lightwave Technol., 16, 615-619(1998). https://doi.org/10.1109/50.664072

    [245] G. Poberaj et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488-503(2012).

    [246] A. J. Mercante et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [247] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [248] H. Takagi, R. Maeda. Room temperature bonding of silicon and lithium niobate. Appl. Phys. Lett., 89, 031914(2006).

    [249] P. Rabiei et al. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573-25581(2013).

    [250] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [251] P. Bernasconi, M. Zgonik, P. Günter. Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals. J. Appl. Phys., 78, 2651-2658(1995).

    [252] R. A. McKee et al. Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Appl. Phys. Lett., 59, 782-784(1991).

    [253] A. Petraru et al. Ferroelectric BaTiO3 thin-film optical waveguide modulators. Appl. Phys. Lett., 81, 1375-1377(2002). https://doi.org/10.1063/1.1498151

    [254] A. A. Demkov, A. B. Posadas. Integration of Functional Oxides with Semiconductors(2014).

    [255] M.-H. Hsu. Monolithic integration of barium titanate on silicon for high-speed and power-efficient optical modulator applications(2016).

    [256] J. P. George et al. Lanthanide-assisted deposition of strongly electro-optic PZT thin films on silicon: toward integrated active nanophotonic devices. ACS Appl. Mater. Interfaces, 7, 13350-13359(2015).

    [257] J. P. George. Integration of ferroelectric thin films on silicon for electro-optic devices(2016).

    [258] W. Heni et al. Silicon–organic and plasmonic–organic hybrid photonics. ACS Photonics, 4, 1576-1590(2017).

    [259] H. Zwickel et al. Verified equivalent-circuit model for slot-waveguide modulators. Opt. Express, 28, 12951-12976(2020).

    [260] S. Wolf et al. DAC-less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators. J. Lightwave Technol., 33, 1425-1432(2015).

    [261] S. Wolf et al. Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices. Opt. Express, 26, 220-232(2018).

    [262] G.-W. Lu et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200  Gbit s1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun., 11, 4224(2020). https://doi.org/10.1038/s41467-020-18005-7

    [263] M. Jazbinsek et al. Organic electro-optic single crystalline films for integrated optics. Proc. SPIE, 7774, 77740Q(2010).

    [264] A. Melikyan et al. High-speed plasmonic phase modulators. Nat. Photonics, 8, 229-233(2014).

    [265] C. Haffner et al. Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale. Proc. IEEE, 104, 2362-2379(2016).

    [266] C. Hoessbacher et al. Plasmonic modulator with 170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express, 25, 1762-1768(2017).

    [267] C. Uhl, H. Hettrich, M. Möller. A 100  Gbit/s 2 Vpp power multiplexer in SiGe BiCMOS technology for directly driving a monolithically integrated plasmonic MZM in a silicon photonics transmitter, 106-109(2017). https://doi.org/10.1109/BCTM.2017.8112921

    [268] W. Heni et al. High speed plasmonic modulator array enabling dense optical interconnect solutions. Opt. Express, 23, 29746-29757(2015).

    [269] A. Melikyan et al. Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40  Gbit/s. Opt. Express, 23, 9938-9946(2015). https://doi.org/10.1364/OE.23.009938

    [270] S. Ummethala et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics, 13, 519-524(2019).

    [271] G. Duan et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 20, 158-170(2014).

    [272] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [273] T. Shimizu et al. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection, 181-183(2011).

    [274] G. Roelkens et al. III-V/Si PICs based on micro-transfer-printing(2019).

    [275] A. J. Zilkie et al. Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8200713(2019).

    [276] B. Szelag et al. Hybrid III-V/silicon technology for laser integration on a 200-mm fully CMOS-compatible silicon photonics platform. IEEE J. Sel. Top. Quantum Electron., 25, 8201210(2019).

    [277] A. Alduino. Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers, 1-29(2010).

    [278] S. Chen et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [279] Z. Wang et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [280] Q. Li et al. Optical phase modulators based on reverse-biased III-V/Si hybrid metal-oxide-semiconductor capacitors. IEEE Photonics Technol. Lett., 32, 345-348(2020).

    [281] S. Ohno et al. Taper-less III-V/Si hybrid MOS optical phase shifter using ultrathin InP membrane(2020).

    [282] Y. Tang et al. 50  Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express, 19, 5811-5816(2011). https://doi.org/10.1364/OE.19.005811

    [283] C. Mattevi, H. Kim, M. Chhowalla. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem., 21, 3324-3334(2011).

    [284] Y. S. Kim et al. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography. Nanoscale, 6, 10100-10105(2014). https://doi.org/10.1039/C4NR02001D

    [285] X. Li et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312-1314(2009).

    [286] R. R. Nair et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [287] K. I. Bolotin et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351-355(2008).

    [288] A. S. Mayorov et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 11, 2396-2399(2011).

    [289] V. Sorianello, M. Midrio, M. Romagnoli. Design optimization of single and double layer graphene phase modulators in SOI. Opt. Express, 23, 6478-6490(2015).

    [290] F. Wang et al. Gate-variable optical transitions in graphene. Science, 320, 206-209(2008).

    [291] L. A. Falkovsky. Optical properties of graphene. J. Phys. Conf. Ser., 129, 012004(2008).

    CLP Journals

    [1] Jiacheng Liu, Gangqiang Zhou, Jiangbing Du, Weihong Shen, Linjie Zhou, Zuyuan He, "Silicon mode-loop Mach-Zehnder modulator with L-shaped PN junction for 0.37 V·cm VπL high-efficiency modulation," Photonics Res. 10, 214 (2022)

    [2] Ang Gao, Chen Yang, Likun Chen, Ru Zhang, Qiang Luo, Wei Wang, Qitao Cao, Zhenzhong Hao, Fang Bo, Guoquan Zhang, Jingjun Xu, "Directional emission in X-cut lithium niobate microresonators without chaos dynamics," Photonics Res. 10, 401 (2022)

    Abdul Rahim, Artur Hermans, Benjamin Wohlfeil, Despoina Petousi, Bart Kuyken, Dries Van Thourhout, Roel Baets, "Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies," Adv. Photon. 3, 024003 (2021)
    Download Citation