[1] Fehler K G, Ovvyan A P, Gruhler N et al. Efficient coupling of an ensemble of nitrogen vacancy center to the mode of a high-Q, Si3N4 photonic crystal cavity[J]. ACS Nano, 13, 6891-6898(2019).
[2] Barth M, Nüsse N, Löchel B et al. Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity[J]. Optics Letters, 34, 1108-1110(2009).
[3] Ota Y, Takamiya D, Ohta R et al. Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity[J]. Applied Physics Letters, 112, 093101(2018).
[4] Abe R, Takeda T, Shiratori R et al. Optimization of an H0 photonic crystal nanocavity using machine learning[J]. Optics Letters, 45, 319-322(2020).
[5] Peng P, Liu Y C, Xu D et al. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances[J]. Physical Review Letters, 119, 233901(2017).
[6] Gurlek B, Sandoghdar V, Martín-Cano D. Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling[J]. ACS Photonics, 5, 456-461(2018).
[7] Schietinger S, Barth M, Aichele T et al. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature[J]. Nano Letters, 9, 1694-1698(2009).
[8] Alaverdyan Y, Vamivakas N, Barnes J et al. Spectral tunability of a plasmonic antenna with a dielectric nanocrystal[J]. Optics Express, 19, 18175-18181(2011).
[9] Kuttge M, García de Abajo F J, Polman A. Ultrasmall mode volume plasmonic nanodisk resonators[J]. Nano Letters, 10, 1537-1541(2010).
[10] Russell K J, Liu T L, Cui S Y et al. Large spontaneous emission enhancement in plasmonic nanocavities[J]. Nature Photonics, 6, 459-462(2012).
[11] Chikkaraddy R, de Nijs B, Benz F et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 535, 127-130(2016).
[12] Hoang T B, Akselrod G M, Mikkelsen M H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities[J]. Nano Letters, 16, 270-275(2016).
[13] Zhang H Y, Zhao W, Liu Y T et al. Photonic-plasmonic hybrid microcavities: physics and applications[J]. Chinese Physics B, 30, 117801(2021).
[14] Conteduca D, Dell’Olio F, Innone F et al. Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications[J]. Optics & Laser Technology, 77, 151-161(2016).
[15] Conteduca D, Reardon C, Scullion M G et al. Ultra-high Q/V hybrid cavity for strong light-matter interaction[J]. APL Photonics, 2, 086101(2017).
[16] Zhang H Y, Liu Y C, Wang C et al. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V[J]. Optics Letters, 45, 4794-4797(2020).
[17] Kurtsiefer C, Mayer S, Zarda P et al. Stable solid-state source of single photons[J]. Physical Review Letters, 85, 290-293(2000).
[18] Yang J Y, Chen H J. Vacuum Rabi splitting of a single nitrogen-vacancy center coupled to a photonic crystal nanocavity[J]. International Journal of Theoretical Physics, 60, 3188-3196(2021).
[19] Butt M A, Khonina S N, Kazanskiy N L. Recent advances in photonic crystal optical devices: a review[J]. Optics & Laser Technology, 142, 107265(2021).
[20] Saldutti M, Xiong M, Dimopoulos E et al. Modal properties of photonic crystal cavities and applications to lasers[J]. Nanomaterials, 11, 3030(2021).
[21] Zhu G X, Liao Q H. Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity[J]. Optics Express, 26, 31391-31401(2018).
[22] Li G, Zhang P F, Yang P F et al. Experimental progress of strongly coupling between optical cavity and atoms[J]. Acta Optica Sinica, 42, 0327005(2022).
[23] Xiao S, Xu X L. On-chip chiral nanophotonic devices based on semiconductor quantum dots[J]. Acta Optica Sinica, 42, 0327009(2022).
[24] Chen D C, Zhou Y H, Huang J F et al. Two-photon scattering in mixed cavity optomechanical system[J]. Acta Optica Sinica, 42, 0327015(2022).
[25] Ding W, Bachelot R, Kostcheev S et al. Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles[J]. Journal of Applied Physics, 108, 124314(2010).
[26] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003).
[27] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[28] Qian Z Y, Li Z C, Hao H et al. Absorption reduction of large Purcell enhancement enabled by topological state-led mode coupling[J]. Physical Review Letters, 126, 023901(2021).
[29] Zhang H Y, Zheng Y J, Yu Z M et al. Topological hybrid nanocavity for coupling phase transition[J]. Journal of Optics, 23, 124002(2021).
[30] Yan Q C, Hu X Y, Fu Y L et al. Quantum topological photonics[J]. Advanced Optical Materials, 9, 2001739(2021).