[1] BRYGO F, DUTOUQUET C, GUERN F L, et al. Laser fluence, repetition rate and pulse duration effects on paint ablation[J]. Applied Surface Science, 2006, 252(6): 2131-2138.
[7] HAYASHI S I, NAWATA K, SAKAI H, et al. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited][J]. Optics Express, 2012, 20(3): 2881-2886.
[8] FREEDMAN A, IANNARILLI F J, WORMHOUDT J C. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(7-8): 1076-1082.
[9] GONZALEZ J J, FERNANDEZ A, OROPEZA D, et al. Femtosecond laser ablation: experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2008, 63(2): 277-286.
[12] DONG J. Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber[J]. Optics Communications, 2003, 226(1): 337-344.
[13] LI G, ZHAO S, YANG K, et al. Theoretical and experimental study of a laser diode end-pumped passively Q-switched Nd:YVO4 laser with Cr4+:YAG saturable absorber[J]. Optical Engineering, 2004, 43(11): 2762-2768.
[14] SHI B, LI J, YE S, et al. Modified Frantz-Nodvik equation for CW end-pumped high-repetition-rate picosecond laser amplifier[J]. Optical Engineering, 2021, 60(9): 096106.
[17] BURSHTEIN Z, BLAU P, KALISKY Y, et al. Excited-state absorption studies of Cr4+ ions in several garnet host crystals[J]. IEEE Journal of Quantum Electronics, 1998, 34(2): 292-299.
[18] LI C Y, DONG J. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser[J]. Journal of Modern Optics, 2016, 63(14): 1-8.