• Journal of Synthetic Crystals
  • Vol. 49, Issue 9, 1735 (2020)
WANG Yunfeng, CUI Shaobo, QIAO Jianliang, and SONG Jinfan*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    WANG Yunfeng, CUI Shaobo, QIAO Jianliang, SONG Jinfan. Research and Prospect on Mn4+ Doped Fluoride Red Luminescent Materials[J]. Journal of Synthetic Crystals, 2020, 49(9): 1735 Copy Citation Text show less
    References

    [1] Roushan M, Zhang X, Li J. Solution-processable white-light-emitting hybrid semiconductor bulk materials with high photoluminescence quantum efficiency[J]. Angewandte Chemie International Edition, 2012,51(2): 436-439.

    [2] Sun C, Zhang Y, Ruan C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots[J]. Advanced Materials, 2016, 28(45):10088-10094.

    [3] Shang M, Li C, Lin J. How to produce white light in a single-phase host?[J]. Chemical Society Reviews, 2014, 43(5): 1372-1386.

    [5] Yoshimura K, Fukunaga H, Izumi M, et al. White LEDs using the sharp β-sialon: Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications[J]. Journal of the Society for Information Display, 2016, 24(7):449-453.

    [6] Wang X F, Qiu Z X, Li Y M, et al. Core-shell structured CaS∶Eu2+@CaZnOS via inward erosion growth to realize a super stable chalcogenide red phosphor[J]. Journal of Materials Chemistry C, 2019, 7(20):5931-5936.

    [7] Li G, Chai H, Yang Q, et al. Enhanced luminescence properties of Eu3+ activated CaGd2(WO4)4 red-emitting phosphors with Mo6+ doping[J]. Journal of Materials Science, 2019, 30(10):9200-9210.

    [8] Zhang S Y, Song Z, Wang S X, et al. Red persistent and photostimulable phosphor SrLiAl3N4∶Eu2+[J]. Journal of Materials Chemistry C, 2020, 8(14):4956-4964.

    [9] Wang R, Wei X, Qin L, et al. Red light-emitting diode based on blue InGaN chip with CdTexS1-x quantum dots[J]. Nanoscale Research Letters, 2017, 12(1):59.

    [10] Cai Y, Wang H, Li Y, et al. Trimethylsilyl iodine-mediated synthesis of highly bright red-emitting CsPbI3 perovskite quantum dots with significantly improved stability[J]. Chemistry of Materials, 2019, 31(3):881-889.

    [11] Luo X, Hou Z, Zhou T, et al. A universal HF-free synthetic method to highly efficient narrow-band red-emitting A2XF6∶Mn4+ (A=K, Na, Rb, Cs; X=Si, Ge, Ti) phosphors[J]. Journal of the American Ceramic Society, 2020, 103(2):1018-1026.

    [12] Chen D, Zhou Y, Zhong J. A review on Mn4+ activators in solids for warm white light-emitting diodes[J]. RSC Advances, 2016, 6(89):86285-86296.

    [13] Zhou Y Y, Song E H, Brik M G, et al. Non-equivalent Mn4+ doping into A2NaScF6 (A=K, Rb, Cs) hosts toward short fluorescence lifetime for backlight display application[J]. Journal of Materials Chemistry C, 2019, 7(30):9203-9210.

    [14] Chen J, Yang C, Chen Y, et al. Local structure modulation induced highly efficient far-red luminescence of La1-xLuxAlO3∶Mn4+ for plant cultivation[J]. Inorganic Chemistry, 2019, 58(13):8379-8387.

    [15] Huang P, Zheng W, Gong Z, et al. Rare earth ion-and transition metal ion-doped inorganic luminescent nanocrystals:from fundamentals to biodetection[J]. Materials Today Nano, 2019, 5:100031.

    [16] Wang B, Lin H, Xu J, et al. CaMg2Al16O27∶Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED[J]. ACS Applied Materials & Interfaces, 2014, 6(24):22905-22913.

    [17] Peng M Y, Yin X W, Tanner P A, et al. Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25∶Mn4+ for warm WLEDs[J]. Chemistry of Materials, 2015, 27(8):2938-2945.

    [18] Chen D C, Zhou Y, Xu W, et al. Enhanced luminescence of Mn4+∶Y3Al5O12 red phosphor via impurity doping[J]. Journal of Materials Chemistry C, 2016, 4(8):1704-1712.

    [19] Huang C S, Huang C L, Liu Y C, et al. Ab initio-aided sensitizer design for Mn4+-activated Mg2TiO4 as an ultrabright fluoride-free red-emitting phosphor[J]. Chemistry of Materials, 2018, 30(5):1769-1775.

    [21] Takahashi T, Adachi S. Mn4+-activated red photoluminescence in K2SiF6 phosphor[J]. Journal of the electrochemical society, 2008, 155(155):183-188.

    [22] Xu Y K, Adachi S. Properties of Na2SiF6∶Mn4+ and Na2GeF6∶Mn4+ red phosphors synthesized by wet chemical etching[J]. Journal of Applied Physics, 2009, 105(1):013525-6.

    [23] Liao C X, Cao R P, Ma Z J, et al. Synthesis of K2SiF6∶Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED[J]. Journal of The American Ceramic Society, 2013, 96(11):3552-3556.

    [24] Zhou Q, Zhou Y, Liu Y, et al. A new and efficient red phosphor for solid-state lighting∶Cs2TiF6∶Mn4+[J]. Journal of Materials Chemistry C, 2015, 3(37):9615-9619.

    [25] Deng T T, Song E H, Su J, et al. The design and preparation of thermally stable Mn4+ activated narrowband red emitting fluoride Na3GaF6∶Mn4+ for warm WLED application[J]. Journal of Materials Chemistry C, 2017, 5(11): 2910-2918.

    [26] Song E H, Wang J Q, Ye S, et al. Room-temperature synthesis and warm-white LED applications of Mn4+ ion doped fluoroaluminate red phosphor Na3AlF6∶Mn4+[J]. Journal of Materials Chemistry C, 2016, 4(13):2480-2487.

    [27] Lv L, Jiang X, Huang S, et al. The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6∶Mn4+[J]. Journal of Materials Chemistry C, 2014, 2(20):3879-3884.

    [28] Jiang X Y, Pan Y X, Huang S M, et al. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6∶Mn4+ for LED applications[J]. Journal of Materials Chemistry C, 2014, 2(13):2301-2306.

    [29] Jiang X Y, Chen Z, Huang S M, et al. A red phosphor BaTiF6∶Mn4+: reaction mechanism, microstructures, optical properties, and applications for white LEDs[J]. Dalton Transactions, 2014, 43(25):9414-9418.

    [30] Zhou Q, Zhou Y Y, Liu Y, et al. A new red phosphor BaGeF6∶Mn4+: hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices[J]. Journal of Materials Chemistry C, 2015, 3(13): 3055-3059.

    [31] Song E, Wang J, Shi J, et al. Highly efficient and thermally stable K3AlF6∶Mn4+ as a red phosphor for ultra-high performance warm-white LEDs[J]. ACS Applied Materials & Interfaces, 2017, 9(10):8805-8812.

    [32] Wang L Y, Song E H, Zhou Y Y, et al. Synthesis and warm-white LED applications of an efficient narrow-band red emitting phosphor, Rb2ZrF6∶Mn4+[J]. Journal of Materials Chemistry C, 2017, 5(29):7253-7261.

    [33] Wang Z, Zhou Y, Yang Z, et al. Synthesis of K2XF6∶Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF[J]. Optical Materials, 2015, 49:235-240.

    [34] Hou Z, Tang X, Luo X, et al. A green synthetic route to the highly efficient K2SiF6∶Mn4+ narrow-band red phosphor for warm white light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(11):2741-2746.

    [35] Huang L, Zhu Y W, Zhang X J, et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6∶xMn4+for warm white light-emitting diodes[J]. Chemistry of Materials, 2016, 28(5):1495-1502.

    [36] Murphy J E, Garcia-Santamaria F, Setlur A A, et al. 62.4: PFS, K2SiF6∶Mn4+: the red-line emitting LED phosphor behind GE’s tri gain technologyTM platform[J]. Sid Symposium Digest of Technical Papers, 2015, 46(1):927-930.

    [37] Nguyen H D, Lin C C, Liu R S. Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials[J]. Angewandte Chemie International Edition, 2015, 54(37):10862-10866.

    [38] Arunkumar P, Kim Y H, Kim H J, et al. Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7232-7240.

    [39] Zhou Y Y, Song E H, Deng T T, et al. Waterproof narrow-band fluoride red phosphor K2TiF6∶Mn4+ via facile superhydrophobic surface modification[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 880-889.

    [40] Huang L, Liu Y, Yu J, et al. Highly stable K2SiF6∶Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs[J]. ACS Applied Materials & Interfaces, 2018, 10(21):18082-18092.

    [41] Huang D, Zhu H, Deng Z, et al. Moisture-resistant Mn4+-doped core-shell-structured fluoride red phosphor exhibiting high luminous efficacy for warm white light-emitting diodes[J]. Angewandte Chemie International Edition, 2018, 131(12):3883-3887.

    [42] Gupta B K, Haranath D, Saini S, et al. Synthesis and characterization of ultra-fine Y2O3∶Eu3+ nanophosphors for luminescent security ink applications[J]. Nanotechnology, 2010, 21(5): 055607.

    [43] Meruga J M, Baride A, Cross W, et al. Red-green-blue printing using luminescence-upconversion inks[J]. Journal of Materials Chemistry C, 2014, 2(12):2221-2227.

    [44] Brubaker C D, Frecker T M, McBride J R, et al. Incorporation of fluorescent quantum dots for 3Dprinting and additive manufacturing applications[J]. Journal of Materials Chemistry C, 2018, 6(28):7584-7593.

    [45] Pan Y, Xie X, Huang Q, et al. Inherently Eu2+/Eu3+ codoped Sc2O3 Nanoparticles as high-performance nanothermometers[J]. Advanced Materials, 2018, 30(14):1705256.1-1705256.6.

    [46] Wang C, Huang Y, Jiang K, et al. Dual-emitting quantum dots/carbon nanodots-based nanoprobe for selective and sensitive detection of Fe3+ in cells[J]. Analyst, 2016, 141(14):4488-4494.

    [47] Chen J, Wei J S, Zhang P, et al. Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process[J]. ACS Applied Materials & Interfaces, 2017, 9(22):18429-18433.

    [48] Lu L, Tu D, Liu Y, et al. Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes[J]. Nano Research, 2017. 2018, 11(1): 264-273.

    [49] Ge J, Jia Q, Liu W, et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo[J]. Advanced Healthcare Materials, 2016, 5(6):665-675.

    [50] Hong H, Wang F, Zhang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3373-3381.

    [51] Li X Q, Su X M, Liu P, et al. Shape-controlled synthesis of phosphor K2SiF6∶Mn4+ nanorods and their luminescence properties[J]. CrystEngComm, 2015, 17(4):930-936.

    [52] Ming H, Liu S F, Liu L L, et al. Highly regular, uniform K3ScF6∶Mn4+ phosphors: facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices[J]. ACS Applied Materials & Interfaces, 2018,10(23):19783-19795.

    [53] Zhu Y, Cao L, Brik M G, et al. Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6∶Mn4+[J]. Journal of Materials Chemistry C, 2017, 5(26):6420-6426.

    WANG Yunfeng, CUI Shaobo, QIAO Jianliang, SONG Jinfan. Research and Prospect on Mn4+ Doped Fluoride Red Luminescent Materials[J]. Journal of Synthetic Crystals, 2020, 49(9): 1735
    Download Citation